Application

13860-2020 Roadway Expansion
14140 - CSAH 12 (109th Avenue) Expansion from Radisson to Lexington in Blaine
Regional Solicitation - Roadways Including Multimodal Elements

Status: Submitted
Submitted Date:
05/15/2020 1:21 PM

Primary Contact

Name:*	Mr.			
	Salutation	First Name	Middle Name	Last Name
Title:	Transportation Planner			
Department:	Anoka County Transportation Division			
Email:	jack.forslund@co.anoka.mn.us			
Address:	1440 Bunker Lake Boulevard NW			
*	Andover	Min		55304-4005
	City	State		Postal Code/Zip
Phone:*	763-324-3179			
	Phone		Ext.	
Fax:	763-324-3			
What Grant Programs are you most interested in?	Regional Elements	tation - Ro	s Includin	Multimodal

Organization Information

Jurisdictional Agency (if different):
Organization Type: County Government
Organization Website:
Address: 1440 BUNKER LAKE BLVD

*	ANDOVER	Minnesota	55304
	City	State/Province	Postal Code/Zip
County:	Anoka		
Phone:*	763-324-3100	Ext.	
Fax:	763-324-3020		
PeopleSoft Vendor Number	$0000003633 A 15$		

Project Information

Project Name	Anoka CSAH 12 (109th Avenue NE) Expansion Project
Primary County where the Project is Located	Anoka
Cities or Townships where the Project is Located:	Blaine

Jurisdictional Agency (If Different than the Applicant):

Brief Project Description (Include location, road name/functional class, type of improvement, etc.)
(Limit 2,800 characters; approximately 400 words)

TRANSPORTATION IMPROVEMENT PROGRAM (TIP)
DESCRIPTION - will be used in TIP if the project is selected for funding. See MnDOT's TIP description guidance.

Project Length (Miles)

The project will reconstruct a 2.3 -mile section of CSAH 12 (109th Avenue NE) from CSAH 52 (Radisson Road NE) to CSAH 17 (Lexington Avenue NE) as a four-lane divided roadway in the City of Blaine. CSAH 12, an A Minor Arterial Expander, is currently a two-lane undivided roadway that has experienced substantial traffic growth in recent years and needs expansion to a four-lane divided roadway with intersection access modifications. The improved section would match that which currently exists to the west of the project, effectively eliminating a traffic bottleneck. Nonmotorized accommodations in the project area are non-existent. The project will close an existing gap in the non-motorized network by constructing a continuous six-foot ADA-compliant sidewalk on the north side of CSAH 12 and a continuous 10-foot ADA-compliant multi-use trail on the south side. The entire length of the project is located along a Tier 2 RBTN alignment. Separated facilities will ensure that CSAH 12's multimodal function, safety and person-throughput are enhanced. The project will also upgrade all signalized intersections with ADA-compliant pedestrian ramps, countdown timers, APS push buttons and high visibility durable pavement markings. ADA pedestrian ramps will also be included at non-signalized intersections.

CSAH 12 (109TH AVE NE) FROM CSAH 52 (RADISSON RD NE) TO CSAH 17 (LEXINGTON AVE NE) IN BLAINE; EXPAND ROADWAY, CURB AND GUTTER, CHANNELIZATION, STORM SEWER, TURN LANES, TRAIL, SIDEWALK AND LIGHTING.
2.3
to the nearest one-tenth of a mile

Project Funding

Are you applying for competitive funds from another source(s) to implement this project?

Federal Amount	\$7,664,000.00
Match Amount	\$1,916,000.00
Minimum of 20\% of project total	
Project Total	\$9,580,000.00
For transit projects, the total cost for the application is total cost minus fare revenues.	
Match Percentage	20.0\%
Minimum of 20\%	
Compute the match percentage by dividing the match amount by the project total	
Source of Match Funds	Anoka County

A minimum of 20\% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2025
Select 2022 or 2023 for TDM projects only. For all other applications, select 2024 or 2025.
Additional Program Years:
Select all years that are feasible if funding in an earlier year becomes available.

Project Information-Roadways

County, City, or Lead Agency	Anoka County
Functional Class of Road	A Minor Arterial Expander
Road System	CSAH
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET	
Road/Route No.	12
i.e., 53 for CSAH 53	
Name of Road	109 th Avenue NE
Example; 1st ST., MAIN AVE	55449
Zip Code where Majority of Work is Being Performed	$03 / 01 / 2025$
(Approximate) Begin Construction Date	$11 / 30 / 2025$
(Approximate) End Construction Date	CSAH 52 (Radisson Road NE)
TERMINI:(Termini listed must be within 0.3 miles of any work)	
From:	CSAH 17 (Lexington Avenue NE)
(Intersection or Address)	
To:	
(Intersection or Address)	
DO NOT INCLUDE LEGAL DESCRIPTION	2.3
Or At	
Miles of Sidewalk (nearest 0.1 miles)	

Miles of Trail (nearest 0.1 miles)
Miles of Trail on the Regional Bicycle Transportation Net
(nearest 0.1 miles)
Primary Types of Work
Examples: GRADE, AGG BASE, BIT BASE, BIT SURF,
SIDEWALK, CURB AND GUTTER,STORM SEWER,
SIGNALS, LIGHTING, GUARDRAIL, BIKE PATH, PED RAMPS,
BRIDGE, PARK AND RIDE, ETC.
BRIDGE/CULVERT PROJECTS (IF APPLICABLE)
OId Bridge/Culvert No.:
New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):
2.3

ROADWAY RECONSTRUCTION INCLUDING GRADING, AGGREGATE BASE, BITUMINOUS BASE, BITUMINOUS SURFACE, CURB AND GUTTER, STORM SEWER, LIGHTING, TRAIL, SIDEWALK

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan (2018), the 2040 Regional Parks Policy Plan (2018), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2. The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan goals, objectives, and strategies that relate to the project.

Briefly list the goals, objectives, strategies, and associated pages:

- Goal A - Transportation System Stewardship, Objectives A \& B, Strategies A1 \& A2 (pages 2.2 \& 2.3)
- Goal B - Safety and Security, Objectives A \& B, Strategies B1 \& B6 (pages 2.5 \& 2.8)
- Goal C - Access to Destinations, Objectives A, B, D \& E, Strategies C1, C2, C9, C15, C16 \& C17
(pages 2.10, 2.11, 2.17, 2.18, 2.22, $2.23 \& 2.24$)
- Goal D - Competitive Economy, Objectives A, B \& C, Strategies D3 (pages $2.27 \& 2.28$)
- Goal E - Healthy and Equitable Communities, Objectives A, B, C \& D, Strategies E1, E2, E3, E4, E5, E6 \& E7 (pages 2.30, 2.31, 2.32, 2.33 \& 2.34)

3. The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

- Anoka County 2040 Transportation Plan Update (November 2019) - Pages 42, 43, "I-2" and "H-4" (See Attachment)

List the applicable documents and pages:

- Anoka County Highway System ADA Transition Plan (March 2018) - Appendix B (See Attachment)

- Draft Blaine 2040 Comprehensive Plan - Pages

147, 152, 172, 179, 182, 185, 186, 187, 188 and 189 (See Attachment)

Limit 2,800 characters, approximately 400 words
4.The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicants that are not State Aid cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6.Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7. The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.
Strategic Capacity (Roadway Expansion): \$1,000,000 to \$10,000,000
Roadway Reconstruction/Modernization: \$1,000,000 to \$7,000,000
Traffic Management Technologies (Roadway System Management): \$250,000 to \$3,500,000
Spot Mobility and Safety: \$1,000,000 to \$3,500,000
Bridges Rehabilitation/Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8. The project must comply with the Americans with Disabilities Act (ADA).

Check the box to indicate that the project meets this requirement. Yes
9.In order for a selected project to be included in the Transportation Improvement Program (TIP) and approved by USDOT, the public agency sponsor must either have a current Americans with Disabilities Act (ADA) self-evaluation or transition plan that covers the public right of way/transportation, as required under Title II of the ADA. The plan must be completed by the local agency before the Regional Solicitation application deadline. For the 2022 Regional Solicitation funding cycle, this requirement may include that the plan is updated within the past five years.

The applicant is a public agency that employs 50 or more people and has a completed ADA transition plan that covers the public Yes right of way/transportation.

Date plan completed:
03/01/2018
http://anokacountyada.com/wp-
content/uploads/2018/05/ACHD-TransitionPlan2018.pdf

The applicant is a public agency that employs fewer than 50 people and has a completed ADA self-evaluation that covers the public right of way/transportation.

Date self-evaluation completed:
Link to plan:
Upload plan or self-evaluation if there is no link
Upload as PDF
10.The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
11.The owner/operator of the facility must operate and maintain the project year-round for the useful life of the improvement, per FHWA direction established 8/27/2008 and updated 6/27/2017.

Check the box to indicate that the project meets this requirement. Yes
12.The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
13.The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
14.The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a principal arterial (non-freeway facilities only) or A-minor arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Expansion and Reconstruction/Modernization and Spot Mobility projects only:
2.The project must be designed to meet 10 -ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement and Strategic Capacity projects only:
3.Projects requiring a grade-separated crossing of a principal arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.
4. The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for funding.

Check the box to indicate that the project meets this requirement.
Bridge Rehabilitation/Replacement projects only:
5. The length of the bridge must equal or exceed 20 feet.

Check the box to indicate that the project meets this requirement.
6. The bridge must have a National Bridge Inventory Rating of 6 or less for rehabilitation projects and 4 or less for replacement projects.

Check the box to indicate that the project meets this requirement.
Roadway Expansion, Reconstruction/Modernization, and Bridge Rehabilitation/Replacement projects only:
7. All roadway projects that involve the construction of a new/expanded interchange or new interchange ramps must have approval by the Metropolitan Council/MnDOT Interchange Planning Review Committee prior to application submittal. Please contact Michael Corbett at MnDOT (Michael.J.Corbett@state.mn.us or 651-234-7793) to determine whether your project needs to go through this process as described in Appendix F of the 2040 Transportation Policy Plan.

Check the box to indicate that the project meets this requirement. Yes

Requirements - Roadways Including Multimodal Elements

Specific Roadway Elements

CONSTRUCTION PROJECT ELEMENTS/COST	Cost
ESTIMATES	$\$ 500,000.00$
Mobilization (approx. 5\% of total cost)	$\$ 650,000.00$
Removals (approx. 5\% of total cost)	$\$ 950,000.00$
Roadway (grading, borrow, etc.)	$\$ 3,000,000.00$
Roadway (aggregates and paving)	$\$ 250,000.00$
Subgrade Correction (muck)	$\$ 1,100,000.00$
Storm Sewer	$\$ 500,000.00$
Ponds	$\$ 650,000.00$
Concrete Items (curb \& gutter, sidewalks, median barriers)	$\$ 60,000.00$
Traffic Control	$\$ 85,000.00$
Striping	$\$ 50,000.00$
Signing	$\$ 50,000.00$

Turf - Erosion \& Landscaping \$350,000.00
Bridge $\$ 0.00$
Retaining Walls $\$ 0.00$
Noise Wall (not calculated in cost effectiveness measure) $\$ 0.00$
Traffic Signals $\$ 0.00$
Wetland Mitigation \$85,000.00
Other Natural and Cultural Resource Protection $\$ 0.00$
RR Crossing $\$ 0.00$
Roadway Contingencies \$600,000.00
Other Roadway Elements $\$ 0.00$
Totals \$8,880,000.00
Specific Bicycle and Pedestrian Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Path/Trail Construction \$300,000.00
Sidewalk Construction \$300,000.00
On-Street Bicycle Facility Construction $\$ 0.00$
Right-of-Way $\$ 0.00$
Pedestrian Curb Ramps (ADA) \$50,000.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping $\$ 0.00$
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies \$50,000.00
Other Bicycle and Pedestrian Elements $\$ 0.00$
Totals \$700,000.00
Specific Transit and TDM Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Fixed Guideway Elements $\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, fare collection, etc.) $\$ 0.00$
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$
Transit Operating Costs

Number of Platform hours	0
Cost Per Platform hour (full loaded Cost)	$\$ 0.00$
Subtotal	$\$ 0.00$
Other Costs - Administration, Overhead,etc.	$\$ 0.00$

Totals

Total Cost	$\$ 9,580,000.00$
Construction Cost Total	$\$ 9,580,000.00$
Transit Operating Cost Total	$\$ 0.00$

Congestion within Project Area:

The measure will analyze the level of congestion within the project area. Council staff will provide travel speed data on the "Level of Congestion" map. The analysis will compare the peak hour travel speed within the project area to fee-flow conditions.
Free-Flow Travel Speed: 43
Peak Hour Travel Speed: 39

Percentage Decrease in Travel Speed in Peak Hour compared to Free-Flow:9.3\%
Upload Level of Congestion map: \quad 1589417363164_Anoka CSAH 12_LvIOfCongestionMap_May 2020.pdf

Congestion on adjacent Parallel Routes:

Adjacent Parallel Corridor Start and End Points:

```
Start Point:
    CSAH 52 (Radisson Road NE)
    CSAH 17 (Lexington Avenue NE)
```

The Free-Flow Travel Speed is black number.
Peak Hour Travel Speed:
40
The Peak Hour Travel Speed is red number.
Percentage Decrease in Travel Speed in Peak Hour Compared to Free-Flow:

Upload Level of Congestion Map:

Principal Arterial Intersection Conversion Study:

Proposed interchange or at-grade project that reduces delay at a High Priority Intersection:
(80 Points)
Proposed at-grade project that reduces delay at a Medium Priority Intersection:
(60 Points)
Proposed at-grade project that reduces delay at a Low Priority Intersection:
(50 Points)
Proposed interchange project that reduces delay at a Medium Priority Intersection:
(40 Points)
Proposed interchange project that reduces delay at a Low Priority Intersection:
(0 Points)
Not listed as a priority in the study:
(0 Points)

Measure B: Project Location Relative to Jobs, Manufacturing, and Education	
Existing Employment within 1 Mile:	3427
Existing Manufacturing/Distribution-Related Employment within 1	1485
Mile:	0
Existing Post-Secondary Students within 1 Mile:	0
Upload Map	1589417487008_Anoka CSAH 12_RegnIEconomyMap_May
	2020.pdf

Please upload attachment in PDF form.

Measure C: Current Heavy Commercial Traffic

RESPONSE: Select one for your project, based on the Regional Truck Corridor Study:

Along Tier 1:
Miles:
(to the nearest 0.1 miles)
Along Tier 2:
Miles:
0

$$
0
$$

(to the nearest 0.1 miles)
Along Tier 3:

Miles:
(to the nearest 0.1 miles)
The project provides a direct and immediate connection (i.e., intersects) with either a Tier 1, Tier 2, or Tier 3 corridor:

0

0

Yes

None of the tiers:

Measure A: Current Daily Person Throughput

Location	West of CSAH 17 (Lexington Avenue NE)
Current AADT Volume	8000
Existing Transit Routes on the Project	N/A
For New Roadways only, list transit routes that will likely be diverted to the new proposed roadway (if applicable).	
Upload Transit Connections Map	1589417748235_Anoka CSAH 12_TransitConnectnsMap_May
	2020.pdf

Please upload attachment in PDF form.

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership	0
Current Daily Person Throughput	10400.0

Measure B: 2040 Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT volume

If checked, METC Staff will provide Forecast (2040) ADT volume
OR

Identify the approved county or city travel demand model to determine forecast (2040) ADT volume

Forecast (2040) ADT volume

Metropolitan Council ABM (refined by SEH/Haifeng
Xiao for use on the Anoka County 2040
Transportation Plan)
10000

Measure A: Connection to disadvantaged populations and projects benefits, impacts, and mitigation

1.Sub-measure: Equity Population Engagement: A successful project is one that is the result of active engagement of low-income populations, people of color, persons with disabilities, youth and the elderly. Engagement should occur prior to and during a projects development, with the intent to provide direct benefits to, or solve, an expressed transportation issue, while also limiting and mitigating any negative impacts. Describe and map the location of any low-income populations, people of color, disabled populations, youth or the elderly within a $1 / 2$ mile of the proposed project. Describe how these specific populations were engaged and provided outreach to, whether through community planning efforts, project needs identification, or during the project development process. Describe what engagement methods and tools were used and how the input is reflected in the projects purpose and need and design. Elements of quality engagement include: outreach and engagement to specific communities and populations that are likely to be directly impacted by the project; techniques to reach out to populations traditionally not involved in community engagement related to transportation projects; feedback from these populations identifying potential positive and negative elements of the proposed project through engagement, study recommendations, or plans that provide feedback from populations that may be impacted by the proposed project. If relevant, describe how NEPA or Title VI regulations will guide engagement activities.

The attached plan excerpts capture the in-person and online engagement that has informed the project's selection and design. Due to the COVID19 outbreak, the County plans to reschedule the planned open house for seeking input on the design concept (online engagement to continue). The County has a history of employing a robust public involvement plan with all major projects which incorporates collaboration from city staff, policymakers and directly with residents, business owners and commuters. For residents and businesses adjacent to the project, our design and environmental impact team will meet with them early in the process and provide them a project folder containing information on the project as well as information for their own use (e.g., plats, ROW limits). Throughout the project we also hold several public meetings at accessible locations as well as organize and attend stakeholder meetings with groups ranging from citizen advocacy groups to chambers of commerce. Additional outreach efforts include the use of social media, newsletters, local cable access TV stations and variable message boards to alert the public of upcoming meetings. Additionally, our website contains links for people to contact us for general information or requests, project specifics and even grievances. All of these efforts are put forth to ensure a successful project in the eyes of the community.
2.Sub-measure: Equity Population Benefits and Impacts: A successful project is one that has been designed to provide direct benefits to lowincome populations, people of color, persons with disabilities, youth and the elderly. All projects must mitigate potential negative benefits as required under federal law. Projects that are designed to provide benefits go beyond the mitigation requirement to proactively provide transportation benefits and solve transportation issues experienced by Equity populations.
a.Describe the projects benefits to low-income populations, people of color, children, people with disabilities, and the elderly. Benefits could relate to pedestrian and bicycle safety improvements; public health benefits; direct access improvements for residents or improved access to destinations such as jobs, school, health care or other; travel time improvements; gap closures; new transportation services or modal options, leveraging of other beneficial projects and investments; and/or community connection and cohesion improvements. Note that this is not an exhaustive list.

Response:
The project benefits protected or limited mobility populations through improvements to and prioritization of multimodal transportation facilities, on which these populations heavily rely. The current lack of non-motorized connections along CSAH 12 expose pedestrians and bicyclists to vehicular traffic, which is even more problematic to those with mobility limitations. Upon project completion, the 2.3-mile project corridor will have a continuous 6 -ft sidewalk (north side) and a continuous 10-ft multi-use trail (south side). Providing separated facilities will improve the safety for all users. Furthermore, the bike trail and sidewalk will provide additional transportation facilities for economically distressed populations between the commercial centers and residential areas on Lexington (including the planned senior center located at Lexington and 12) with CSAH 17 to the retail and sporting complex along Radisson Road.

CSAH 12, a RBTN Tier 2 corridor, provides important connections to regional job concentrations and the regional transit system. Separated multimodal facilities will provide a much safer corridor for all users. Upon project completion, non-motorized users will be able to make seamless connections between regional and local destinations (see plan excerpt). The Blaine National Sports Center, with 52 athletic fields, is an important regional destination near the project (w/in 0.5 miles). The Blaine Wetland Sanctuary, which is directly adjacent to this project, is a 500 -acre open space that the city has preserved and opened to the public as a recreational and environmental education area. This project will help improve connectivity between residential, commercial and recreational areas along CSAH 12. This project will fill in an existing network gap and add new facilities in a developing area, which will benefit all users. The project will also upgrade all signalized intersections with ADA-compliant ped ramps,
countdown timers, APS push buttons and high visibility durable pavement markings. ADA ped ramps will also be included at non-signalized intersections. These improvements will also improve the visibility of the most vulnerable travelers. The non-motorized improvements will expand opportunities for low-cost and active modes of transportation, equating to various economic and health benefits.

The project will provide roadway users with reliable travel times at reasonable travel speeds. The Blaine City Hall and Police Station are located within the project area. Improvements to CSAH 12 are critical to ensure that city services, especially those involving emergencies, maintain acceptable response times.
(Limit 2,800 characters; approximately 400 words)
b. Describe any negative impacts to low-income populations, people of color, children, people with disabilities, and the elderly created by the project, along with measures that will be taken to mitigate them. Negative impacts that are not adequately mitigated can result in a reduction in points.
Below is a list of negative impacts. Note that this is not an exhaustive list.
Increased difficulty in street crossing caused by increased roadway width, increased traffic speed, wider turning radii, or other elements that negatively impact pedestrian access.
Increased noise.
Decreased pedestrian access through sidewalk removal / narrowing, placement of barriers along the walking path, increase in auto-oriented curb cuts, etc.
Project elements that are detrimental to location-based air quality by increasing stop/start activity at intersections, creating vehicle idling areas, directing an increased number of vehicles to a particular point, etc.
Increased speed and/or cut-through traffic.
Removed or diminished safe bicycle access.
Inclusion of some other barrier to access to jobs and other destinations.
Displacement of residents and businesses.
Mitigation of temporary construction/implementation impacts such as dust; noise; reduced access for travelers and to businesses; disruption of utilities; and eliminated street crossings.
Other

Response:
The project does not impose adverse human health or environmental effects on low-income populations, communities of color, or vulnerable populations such as children, the elderly, and people with disabilities. Project construction will incorporate proper noise, dust and traffic mitigation as well as planned detour routes consistent with adopted County policies. The project requires no relocations of residences or businesses.

Select one:

3.Sub-measure: Bonus Points Those projects that score at least 80% of the maximum total points available through sub-measures 1 and 2 will be awarded bonus points based on the geographic location of the project. These points will be assigned as follows, based on the highestscoring geography the project contacts:
a. 25 points to projects within an Area of Concentrated Poverty with 50% or more people of color
b. 20 points to projects within an Area of Concentrated Poverty
c. 15 points to projects within census tracts with the percent of population in poverty or population of color above the regional average percent
d. 10 points for all other areas

Project is located in an Area of Concentrated Poverty where 50\%
or more of residents are people of color (ACP50):
Project located in Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color:

Project located in a census tract that is below the regional average for population in poverty or populations of color or Yes includes children, people with disabilities, or the elderly:
(up to 40% of maximum score)
Upload the "Socio-Economic Conditions" map used for this measure. The second map created for sub measure A1 can be uploaded on the Other Attachments Form, or can be combined with the "Socio-Economic Conditions" map into a single PDF and uploaded here.

Upload Map
1589418135865_Anoka CSAH 12_SocioEconomicMap_May 2020.pdf

Measure B: Part 1: Housing Performance Score

	Segment Length (For stand-alone projects, enter population from Regional Economy map) within each City/Township	Segment Length/Total Project Length	Score	Housing Score Multiplied by Segment percent
Blaine	4800.0	1.0	100.0	100.0

Total Project Length

Total Project Length
Project length entered on the Project Information - General form.

Affordable Housing Scoring

Part 2: Affordable Housing Access

Reference Access to Affordable Housing Guidance located under Regional Solicitation Resources for information on how to respond to this measure and create the map.
If text box is not showing, click Edit or "Add" in top right of page.

Substantial growth in residential development is currently occurring in areas adjacent to CSAH 12 (see "Legends of Blaine" STREAMS database profile below) and is anticipated to continue into the foreseeable future based on current development proposals and known areas of market interest. All of this is in accordance with the City's growth/redevelopment staging plan.

Property Info:

- Year Built: 2017
- Building Type: Apartment
- Groups Served: Family
- Total Units: 192
- Affordable Units: 192

Response:

Affordable Units by Bedroom:

- 1 BR: 73
- 2 BR: 79
- 3 BR: 40

Units by Area Median Income:

- 60\%: 192

Funding Category:

- Tax Credit (LIHTC 4\%)

Abstract

The City's Comp Plan identifies additional affordable housing on the north side of CSAH 12, just east of CSAH 17. A new housing development has been proposed for this area that will include market-rate housing in the form of a 150 -unit apartment complex and 128-unit townhome complex.

The project benefits these residents through improvements to and prioritization of multimodal transportation facilities. The current lack of nonmotorized connections along CSAH 12 expose peds/bikes to traffic. Upon project completion, the 2.3-mile project corridor will have a continuous 6 - ft sidewalk (north side) and a continuous 10-ft multiuse trail (south side). Separated facilities will ensure that CSAH 12's multimodal function, safety and person-throughput are enhanced. The project will also upgrade all signalized intersections with ADA-compliant ped ramps, countdown timers, APS push buttons and high visibility durable pavement markings. ADA ped ramps will also be included at non-signalized intersections. These improvements will improve the visibility of the most vulnerable travelers.

This project will fill in an existing network gap along a RBTN Tier 2 corridor and add new facilities in a developing area, which will benefit all users. The Blaine City Hall and Police Station are located near CSAH 12. Improvements to CSAH 12 are critical to ensure that city services, especially those involving emergencies, maintain acceptable response times.

Measure A: Infrastructure Age

Year of Original
Roadway Construction
or Most Recent
Segment Length
Calculation
Calculation 2

Reconstruction
1989.0

2.3	4574.7	1989.0
2	4575	1989

Average Construction Year

Weighted Year
1989.0

Total Segment Length (Miles)

Total Segment Length
2.3

Measure A: Congestion Reduction/Air Quality

Total Peak Hour	Total Peak	Total Peak			EXPLANA			
							TION of	
Delay Per	Hour	Hour	Volume	Volume	Total Peak	Total Peak	methodolo	
Vehicle	Delay Per	Delay Per	without	with the	Hour	Hour	gy used to	Synchro
	Vehicle	Vehicle		Project	Delay	Delay	calculate	
The	With The	Reduced	(Vehicles	(Vehicles	Reduced	Reduced	railroad	Reports
Project	Project	by Project	per hour)	Per Hour):	y the	by the	crossing	
(Seconds/	(Seconds/	(Seconds/			Project:	Project:	delay, if	
	Vehicle)	Vehicle)					applicable.	

73.1	57.5	15.6	3765	3765	58734.0	58734.0		158941887
:---								
0271_Anok								
a CSAH								

58734

Vehicle Delay Reduced

Total Peak Hour Delay Reduced

Total Peak Hour Delay Reduced
58734.0
58734.0

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX, and VOC)		
Peak Hour Emissions without the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):	Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):
14.04	12.98	
14	13	1.06

Total

Total Emissions Reduced:

Upload Synchro Report
1.06

1589419151875_Anoka CSAH 12_SynchroReports_May 2020.pdf

Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

Total (CO, NOX, and VOC)
Peak Hour Emissions without the Project (Kilograms):

Total (CO, NOX, and VOC) Peak Hour Emissions with the Project (Kilograms):

Total (CO, NOX, and VOC)
Peak Hour Emissions
Reduced by the Project
(Kilograms):

Total Parallel Roadway

Emissions Reduced on Parallel Roadways
Upload Synchro Report
Please upload attachment in PDF form. (Save Form, then click 'Edit' in top right to upload file.)

New Roadway Portion:

Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons: 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or Produced on New Roadway (Kilograms): 0
EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the
Project (Kilograms):

Measure B:Roadway projects that include railroad grade-separation elements

Cruise speed in miles per hour without the project: 0
Vehicle miles traveled without the project: 0
Total delay in hours without the project: 0
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)

Measure A: Benefit of Crash Reduction

Crash Modification Factor Used:
Crash Modification Factor ID: 7566 (Conversion of urban and rural two-lane roadways to four-lane divided roadways)
(Limit 700 Characters; approximately 100 words)

Rationale for Crash Modification Selected:
(Limit 1400 Characters; approximately 200 words)
Project Benefit (\$) from B/C Ratio: \$7,831,797.00
Total Fatal (K) Crashes: 0
Total Serious Injury (A) Crashes: 1
Total Non-Motorized Fatal and Serious Injury Crashes: 0
Total Crashes: 36
This CMF was used as the existing CSAH 12 is being expanded from a two-lane roadway to a divided four-lane roadway.

```
Total Fatal (K) Crashes Reduced by Project: 0
Total Serious Injury (A) Crashes Reduced by Project: 1
Total Non-Motorized Fatal and Serious Injury Crashes Reduced by }
Project:
Total Crashes Reduced by Project:24
Worksheet Attachment
1589419444978_Anoka CSAH 12_BCworksheet_May
2020.pdf
```

Please upload attachment in PDF form.

Roadway projects that include railroad grade-separation elements:

Current AADT volume
Average daily trains:
Crash Risk Exposure eliminated:

0
0

0

Measure A: Multimodal Elements and Existing Connections

Currently, this segment of CSAH 12 does not have existing trails or sidewalks along the roadway; therefore pedestrian safety is a concern. The project will close an existing gap in the nonmotorized network by constructing a continuous six-foot ADA-compliant sidewalk on the north side of CSAH 12 and a continuous 10-foot ADAcompliant multi-use trail on the south side. The entire length of the project is located along a Tier 2 RBTN alignment. The proposed improvements will connect into the existing adjacent trail corridors. Separated facilities will ensure that CSAH 12's multimodal function, safety and person-throughput are enhanced. The project will also upgrade all signalized intersections with ADA-compliant pedestrian ramps, countdown timers, APS push buttons and high visibility durable pavement markings. ADA pedestrian ramps will also be included at non-signalized intersections. These improvements will allow easy access for persons with mobility limitations.

Measure A: Multimodal Elements and Existing Connections

The project will provide facilities for safe walking and bicycling that do not exist today. Upon project completion, the 2.3-mile project corridor will have a continuous 6 -ft sidewalk (north side) and a continuous $10-\mathrm{ft}$ multi-use trail (south side). This trail will safely accommodate two-way directional traffic. Providing separated facilities will improve the safety for all users. Non-motorized users will no longer be forced to travel in the roadway ($8,000 \mathrm{vpd}$ w/ posted speeds of 55 mph). Separated facilities will ensure that CSAH 12's multimodal function, safety and person-throughput are enhanced.

The entire length of the project is located along a Tier 2 RBTN alignment. The RBTN was developed to emphasize connections to regional job concentrations and the regional transit system, to prioritize investment where there is high demand (or the potential for high demand) for bicycle travel, and to provide opportunities to enhance local economic development and business retention. As reflected in the City's Comp Plan, this project will encourage community connectivity and strengthen local connections to existing regional bikeways. Upon project completion, non-motorized users will be able to make seamless connections between regional and local destinations. The Blaine National Sports Center, with 52 athletic fields, is an important regional destination near the project (w/in 0.5 miles). The Blaine Wetland Sanctuary (directly adjacent to CSAH 12) is a 500 -acre open space that the city has preserved and opened to the public as a recreational and environmental education area. This project will help improve connectivity between residential, commercial and recreational areas along CSAH 12. This project will fill in an existing network gap and add new facilities in a developing area, which will benefit all users.

The project will address locations identified as
deficient in the County's ADA Transition Plan (see excerpt). The project will upgrade CSAH 12 signalized intersections with ADA-compliant ped ramps, countdown timers, APS push buttons and high visibility durable pavement markings. ADA ped ramps will also be included at other intersections. These improvements will also improve the visibility of the most vulnerable travelers. The non-motorized improvements will expand opportunities for low-cost and active modes of transportation, equating to various economic and health benefits.

The project will expand the existing roadway to a 4lane divided facility with designated turn lanes at key locations and integrate critical safety improvements through separated multimodal facilities to reduce crash risk exposure, while also improving safety and comfort for all users. The project will provide roadway users with reliable travel times at reasonable travel speeds.

Transit Projects Not Requiring Construction

If the applicant is completing a transit application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment - Construction Projects

1)Layout (25 Percent of Points)

Layout should include proposed geometrics and existing and proposed right-of-way boundaries.
Layout approved by the applicant and all impacted jurisdictions (i.e., cities/counties that the project goes through or agencies that maintain the roadway(s)). A PDF of the layout must be attached along with letters from each jurisdiction to receive points.

100\%

Please upload attachment in PDF form.
Layout completed but not approved by all jurisdictions. A PDF of the layout must be attached to receive points.

50\%
Attach Layout
Please upload attachment in PDF form.
Layout has not been started
0\%
Anticipated date or date of completion
2)Review of Section 106 Historic Resources (15 Percent of Points)

No known historic properties eligible for or listed in the National Register of Historic Places are located in the project area, and Yes project is not located on an identified historic bridge
100%
There are historical/archeological properties present but determination of no historic properties affected is anticipated.

100\%
Historic/archeological property impacted; determination of no adverse effect anticipated

80\%
Historic/archeological property impacted; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological properties in the project area.

0\%
Project is located on an identified historic bridge
3)Right-of-Way (25 Percent of Points)

Right-of-way, permanent or temporary easements either not required or all have been acquired
100%
Right-of-way, permanent or temporary easements required, plat, legal descriptions, or official map complete

50\%
Right-of-way, permanent or temporary easements required, parcels identified

25\%
Right-of-way, permanent or temporary easements required, parcels not all identified

0\%
Anticipated date or date of acquisition
4)Railroad Involvement (15 Percent of Points)

No railroad involvement on project or railroad Right-of-Way agreement is executed (include signature page, if applicable)

100\%

Signature Page

Please upload attachment in PDF form.
Railroad Right-of-Way Agreement required; negotiations have begun

50\%
Railroad Right-of-Way Agreement required; negotiations have not begun.

0\%
Anticipated date or date of executed Agreement
5) Public Involvement (20 percent of points)

Projects that have been through a public process with residents and other interested public entities are more likely than others to be successful. The project applicant must indicate that events and/or targeted outreach (e.g., surveys and other web-based input) were held to help identify the transportation problem, how the potential solution was selected instead of other options, and the public involvement completed to date on the project. List Dates of most recent meetings and outreach specific to this project:

Meeting with general public:
Meeting with partner agencies:
Targeted online/mail outreach:
Number of respondents:
Meetings specific to this project with the general public and partner agencies have been used to help identify the project need.

100\%
Targeted outreach to this project with the general public and partner agencies have been used to help identify the project need.

75\%
At least one meeting specific to this project with the general public has been used to help identify the project need.

50\%
At least one meeting specific to this project with key partner agencies has been used to help identify the project need.

50\%
No meeting or outreach specific to this project was conducted, but the project was identified through meetings and/or outreach related to a larger planning effort.

25\%
No outreach has led to the selection of this project.
0\%

This project was highlighted as a priority by a number of plans, each with their own community input (see attached plan excerpts). Throughout the entire 2040 transportation plan update process, the County sought input from the public and transportation partners. This effort included an individual meeting with Blaine staff on May 3, 2017 at the onset of the planning process to discuss planned development activities and to gain a better understanding of the priorities of the city as it relates to this planning process (see the City's input on this project in attachment). A public meeting was held on March 28, 2018 during the plan. This meeting introduced the planning effort, the purpose and goals of the Plan, and the results of the technical analyses completed as part of the process. A webpage devoted to the Plan was developed and updated periodically, which provided the opportunity to comment on the Plan. The County also circulated a draft of the plan for review and comment by partnering agencies. Additional coordination occurred and revisions to the plan were made, as deemed appropriate. A public hearing was conducted on December 18, 2018 to receive public comment on the Plan. Those attending had the right to provide comments on the Plan. All meeting notices were published in the Anoka County Union Herald and also posted on the County's website. The City conducted a similar process with their plan.

An open house meeting for the County's ADA Transition Plan was held on October 30, 2017. Details of the condition assessment of the traffic signals and pedestrian facilities adjacent to CSAH 12 were also available on the County's ADA Transition Plan webpage. No formal comments were submitted via the website or at the public open house. The County's ADA Title II Coordinator will continue to be available for questions or discussion. Contact information for this person is
available on the webpage.

Due to the COVID-19 outbreak, the planned open house to seek input on the design concept will be rescheduled soon (online engagement to continue). The County will continue to utilize both traditional meetings and web-based content to ensure all interested populations have the opportunity to provide input on this important project.

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form):	$\$ 9,580,000.00$
Enter Amount of the Noise Walls:	$\$ 0.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 9,580,000.00$
Enter amount of any outside, competitive funding:	$\$ 0.00$
Attach documentation of award:	
Points Awarded in Previous Criteria	$\$ 0.00$

Other Attachments

File Name	Description	File Size
Anoka CSAH 12_1PgProjectSumm_May 2020.pdf	One Page Project Summary	269 KB
Anoka CSAH 12_2040BlaineCompPlanExcerpt_May 2020.pdf	Excerpt from Blaine 2040 Comprehensive Plan	1.4 MB
Anoka CSAH 12_ACHD2040TransportationPlanUpdat eExcerpt_May 2020.pdf	Excerpt from Anoka County 2040 Transportation Plan Update (November 2019)	1.5 MB
Anoka CSAH 12_ACHDTransitionPlanExcerpt_May 2020.pdf	Excerpt from Anoka County Highway System ADA Transition Plan (March 2018)	1.7 MB
Anoka CSAH 12_AnokaCoResolution_May 2020.pdf	Anoka County Resolution	194 KB
Anoka CSAH 12_BlaineSupportLtr_May2020.pdf	City of Blaine Support Letter	465 KB
Anoka CSAH 12_ExistingPhotos_May 2020.pdf	Existing Condition Photographs	913 KB

Level of Congestion

Roadway Expansion Project: CSAH 12 (109th Avenue NE) Reconstruction Project | Map ID: 1586182683720

- Project Points

Project

Level of Congestion

Roadway Expansion Project: CSAH 12 (109th Avenue NE) Reconstruction Project | Map ID: 1586182683720

- Project Points

Project

HousingLink

Streams

Property Detail

Known Property Addresses

1	109th Ave NE \& Lexington Ave NE	Blaine

Funding Dates \& Programs
First known closing: 7/1/2017
Most recent closing: 7/1/2017
Earliest estimated expiration: 7/1/2047
Last Activity: Preservation

MHFA: Housing Tax Credits 4\%
Close Date: 7/1/2017
Estimated Expiration: 7/1/2047
Known Property Identifiers
HousingLink: 12416
MHFATC4: D8044

NORTH MEADOWS

BLAINE, MINNESOTA

The Legends of Blaine participates in an affordable housing program. Household income \& student status limitations apply. The household income is based on GROSS annual income (before any deductions) earned from all sources including; wages, social security payments, public assistance, pensions, annuities, interest income, dividends, stocks, bonds, insurance settlements, recurring gifts from family/friends, lottery winnings, etc. The property has a minimum household income requirement of 2.5 times the monthly rent amount to qualify. Third party verification will be required of all income and copies of thx returns and pay stubs may be required. Total household income must be UNDER the following limits based on household size:

4.8 AC .

	4		\geqslant	\checkmark			4	\dagger	7	＊	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	「	\％	\uparrow	$\overline{7}$	${ }^{*}$	个4	「	7	个4	F
Traffic Volume（veh／h）	340	285	125	100	380	75	260	1200	145	55	470	330
Future Volume（veh／h）	340	285	125	100	380	75	260	1200	145	55	470	330
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate，veh／h	370	310	136	109	413	82	283	1304	158	60	511	359
Adj No．of Lanes	1	1	1	1	1	1	1	2	1	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	355	669	569	131	434	369	296	1311	587	76	874	391
Arrive On Green	0.20	0.36	0.36	0.07	0.23	0.23	0.17	0.37	0.37	0.04	0.25	0.25
Sat Flow，veh／h	1774	1863	1583	1774	1863	1583	1774	3539	1583	1774	3539	1583
Grp Volume（v），veh／h	370	310	136	109	413	82	283	1304	158	60	511	359
Grp Sat Flow（s），veh／h／n	1774	1863	1583	1774	1863	1583	1774	1770	1583	1774	1770	1583
Q Serve（g＿s），s	30.0	19.2	9.0	9.1	32.8	6.3	23.7	55.1	10.5	5.0	19.1	33.1
Cycle Q Clear（g＿c），s	30.0	19.2	9.0	9.1	32.8	6.3	23.7	55.1	10.5	5.0	19.1	33.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	355	669	569	131	434	369	296	1311	587	76	874	391
VIC Ratio（X）	1.04	0.46	0.24	0.83	0.95	0.22	0.96	0.99	0.27	0.79	0.58	0.92
Avail Cap（c＿a），veh／h	355	669	569	201	441	375	296	1311	587	83	874	391
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	60.0	36.9	33.7	68.5	56.7	46.5	62.0	47.1	33.0	71.1	49.7	55.0
Incr Delay（d2），s／veh	59.4	0.5	0.2	15.9	30.5	0.3	40.7	23.5	1.1	36.0	2.9	29.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	20.5	10.0	4.0	5.1	20.5	2.8	15.0	31.3	4.8	3.2	9.6	17.6
LnGrp Delay（d），s／veh	119.4	37.4	33.9	84.4	87.1	46.8	102.7	70.6	34.1	107.1	52.6	84.0
LnGrp LOS	F	D	C	F	F	D	F	E	C	F	D	F
Approach Vol，veh／h		816			604			1745			930	
Approach Delay，s／veh		74.0			81.2			72.5			68.2	
Approach LOS		E			F			E			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	11.4	62.1	16.1	60.4	30.0	43.5	35.0	41.5				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	6.5	5.0	6.5	5.0	6.5	5.0	6.5				
Max Green Setting（Gmax），s	7.0	54.5	17.0	48.5	25.0	36.5	30.0	35.5				
Max Q Clear Time（g＿c＋11），s	7.0	57.1	11.1	21.2	25.7	35.1	32.0	34.8				
Green Ext Time（p＿c），s	0.0	0.0	0.1	4.7	0.0	1.2	0.0	0.2				
Intersection Summary												
HCM 2010 Ctrl DelayHCM 2010 LOS			73.1									
			E									

					4	\ddagger	4	\leftarrow
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	61	22	55	30	43	35	42
Maximum Split (\%)	8.0\%	40.7\%	14.7\%	36.7\%	20.0\%	28.7\%	23.3\%	28.0\%
Minimum Split (s)	12	42	12	42	12	42	12	42
Yellow Time (s)	3.5	5	3.5	5	3.5	5	3.5	5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Minimum Initial (s)	7	15	7	10	7	15	7	10
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		7		7		7		7
Flash Dont Walk (s)		28		28		28		28
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	120	132	43	65	120	0	43	78
End Time (s)	132	43	65	120	0	43	78	120
Yield/Force Off (s)	127	36.5	60	113.5	145	36.5	73	113.5
Yield/Force Off 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Local Start Time (s)	120	132	43	65	120	0	43	78
Local Yield (s)	127	36.5	60	113.5	145	36.5	73	113.5
Local Yield 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Intersection Summary								
Cycle Length			150					
Control Type	Actuated-Coordinated							
Natural Cycle			150					
Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: $\quad 3:$ CSAH $52 \&$ CSAH 12

3: CSAH 52 \& CSAH 12

Direction	EB	WB	NB	SB	All
Future Volume (vph)	750	555	1605	855	3765
CO Emissions (kg)	2.03	1.95	4.20	1.67	9.84
NOx Emissions (kg)	0.39	0.38	0.82	0.32	1.92
VOC Emissions (kg)	0.47	0.45	0.97	0.39	2.28

					4	\ddagger	4	\leftarrow
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	61	22	55	30	43	35	42
Maximum Split (\%)	8.0\%	40.7\%	14.7\%	36.7\%	20.0\%	28.7\%	23.3\%	28.0\%
Minimum Split (s)	12	42	12	42	12	42	12	42
Yellow Time (s)	3.5	5	3.5	5	3.5	5	3.5	5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Minimum Initial (s)	7	15	7	10	7	15	7	10
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		7		7		7		7
Flash Dont Walk (s)		28		28		28		28
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	120	132	43	65	120	0	43	78
End Time (s)	132	43	65	120	0	43	78	120
Yield/Force Off (s)	127	36.5	60	113.5	145	36.5	73	113.5
Yield/Force Off 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Local Start Time (s)	120	132	43	65	120	0	43	78
Local Yield (s)	127	36.5	60	113.5	145	36.5	73	113.5
Local Yield 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Intersection Summary								
Cycle Length			150					
Control Type	Actuated-Coordinated							
Natural Cycle			150					
Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: $\quad 3:$ CSAH $52 \&$ CSAH 12

3: CSAH 52 \& CSAH 12

Direction	EB	WB	NB	SB	All
Future Volume (vph)	750	555	1605	855	3765
CO Emissions (kg)	2.04	1.86	3.61	1.58	9.10
NOx Emissions (kg)	0.40	0.36	0.70	0.31	1.77
VOC Emissions (kg)	0.47	0.43	0.84	0.37	2.11

	4		\geqslant	\checkmark			4	\dagger	7	＊	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	「	\％	\uparrow	$\overline{7}$	${ }^{*}$	个4	「	7	个4	F
Traffic Volume（veh／h）	340	285	125	100	380	75	260	1200	145	55	470	330
Future Volume（veh／h）	340	285	125	100	380	75	260	1200	145	55	470	330
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow，veh／h／ln	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863	1863
Adj Flow Rate，veh／h	370	310	136	109	413	82	283	1304	158	60	511	359
Adj No．of Lanes	1	1	1	1	1	1	1	2	1	1	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh，\％	2	2	2	2	2	2	2	2	2	2	2	2
Cap，veh／h	355	669	569	131	434	369	296	1311	587	76	874	391
Arrive On Green	0.20	0.36	0.36	0.07	0.23	0.23	0.17	0.37	0.37	0.04	0.25	0.25
Sat Flow，veh／h	1774	1863	1583	1774	1863	1583	1774	3539	1583	1774	3539	1583
Grp Volume（v），veh／h	370	310	136	109	413	82	283	1304	158	60	511	359
Grp Sat Flow（s），veh／h／n	1774	1863	1583	1774	1863	1583	1774	1770	1583	1774	1770	1583
Q Serve（g＿s），s	30.0	19.2	9.0	9.1	32.8	6.3	23.7	55.1	10.5	5.0	19.1	33.1
Cycle Q Clear（g＿c），s	30.0	19.2	9.0	9.1	32.8	6.3	23.7	55.1	10.5	5.0	19.1	33.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap（c），veh／h	355	669	569	131	434	369	296	1311	587	76	874	391
VIC Ratio（X）	1.04	0.46	0.24	0.83	0.95	0.22	0.96	0.99	0.27	0.79	0.58	0.92
Avail Cap（c＿a），veh／h	355	669	569	201	441	375	296	1311	587	83	874	391
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（I）	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay（d），s／veh	60.0	36.9	33.7	68.5	56.7	46.5	62.0	47.1	33.0	71.1	49.7	55.0
Incr Delay（d2），s／veh	59.4	0.5	0.2	15.9	30.5	0.3	40.7	23.5	1.1	36.0	2.9	29.0
Initial Q Delay（d3），s／veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／ln	20.5	10.0	4.0	5.1	20.5	2.8	15.0	31.3	4.8	3.2	9.6	17.6
LnGrp Delay（d），s／veh	119.4	37.4	33.9	84.4	87.1	46.8	102.7	70.6	34.1	107.1	52.6	84.0
LnGrp LOS	F	D	C	F	F	D	F	E	C	F	D	F
Approach Vol，veh／h		816			604			1745			930	
Approach Delay，s／veh		74.0			81.2			72.5			68.2	
Approach LOS		E			F			E			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s	11.4	62.1	16.1	60.4	30.0	43.5	35.0	41.5				
Change Period（ $Y+R \mathrm{c}$ ），s	5.0	6.5	5.0	6.5	5.0	6.5	5.0	6.5				
Max Green Setting（Gmax），s	7.0	54.5	17.0	48.5	25.0	36.5	30.0	35.5				
Max Q Clear Time（g＿c＋11），s	7.0	57.1	11.1	21.2	25.7	35.1	32.0	34.8				
Green Ext Time（p＿c），s	0.0	0.0	0.1	4.7	0.0	1.2	0.0	0.2				
Intersection Summary												
HCM 2010 Ctrl DelayHCM 2010 LOS			73.1									
			E									

					4	\ddagger	4	\leftarrow
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	61	22	55	30	43	35	42
Maximum Split (\%)	8.0\%	40.7\%	14.7\%	36.7\%	20.0\%	28.7\%	23.3\%	28.0\%
Minimum Split (s)	12	42	12	42	12	42	12	42
Yellow Time (s)	3.5	5	3.5	5	3.5	5	3.5	5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Minimum Initial (s)	7	15	7	10	7	15	7	10
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		7		7		7		7
Flash Dont Walk (s)		28		28		28		28
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	120	132	43	65	120	0	43	78
End Time (s)	132	43	65	120	0	43	78	120
Yield/Force Off (s)	127	36.5	60	113.5	145	36.5	73	113.5
Yield/Force Off 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Local Start Time (s)	120	132	43	65	120	0	43	78
Local Yield (s)	127	36.5	60	113.5	145	36.5	73	113.5
Local Yield 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Intersection Summary								
Cycle Length			150					
Control Type	Actuated-Coordinated							
Natural Cycle			150					
Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: $\quad 3:$ CSAH $52 \&$ CSAH 12

3: CSAH 52 \& CSAH 12

Direction	EB	WB	NB	SB	All
Future Volume (vph)	750	555	1605	855	3765
CO Emissions (kg)	2.03	1.95	4.20	1.67	9.84
NOx Emissions (kg)	0.39	0.38	0.82	0.32	1.92
VOC Emissions (kg)	0.47	0.45	0.97	0.39	2.28

					4	\ddagger	4	\leftarrow
Phase Number	1	2	3	4	5	6	7	8
Movement	SBL	NBT	WBL	EBT	NBL	SBT	EBL	WBT
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag
Lead-Lag Optimize	Yes							
Recall Mode	None	C-Max	None	None	None	C-Max	None	None
Maximum Split (s)	12	61	22	55	30	43	35	42
Maximum Split (\%)	8.0\%	40.7\%	14.7\%	36.7\%	20.0\%	28.7\%	23.3\%	28.0\%
Minimum Split (s)	12	42	12	42	12	42	12	42
Yellow Time (s)	3.5	5	3.5	5	3.5	5	3.5	5
All-Red Time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Minimum Initial (s)	7	15	7	10	7	15	7	10
Vehicle Extension (s)	3	3	3	3	3	3	3	3
Minimum Gap (s)	3	3	3	3	3	3	3	3
Time Before Reduce (s)	0	0	0	0	0	0	0	0
Time To Reduce (s)	0	0	0	0	0	0	0	0
Walk Time (s)		7		7		7		7
Flash Dont Walk (s)		28		28		28		28
Dual Entry	No	Yes	No	Yes	No	Yes	No	Yes
Inhibit Max	Yes							
Start Time (s)	120	132	43	65	120	0	43	78
End Time (s)	132	43	65	120	0	43	78	120
Yield/Force Off (s)	127	36.5	60	113.5	145	36.5	73	113.5
Yield/Force Off 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Local Start Time (s)	120	132	43	65	120	0	43	78
Local Yield (s)	127	36.5	60	113.5	145	36.5	73	113.5
Local Yield 170(s)	127	8.5	60	85.5	145	8.5	73	85.5
Intersection Summary								
Cycle Length			150					
Control Type	Actuated-Coordinated							
Natural Cycle			150					
Offset: 0 (0\%), Referenced to phase 2:NBT and 6:SBT, Start of Green								

Splits and Phases: $\quad 3:$ CSAH $52 \&$ CSAH 12

3: CSAH 52 \& CSAH 12

Direction	EB	WB	NB	SB	All
Future Volume (vph)	750	555	1605	855	3765
CO Emissions (kg)	2.04	1.86	3.61	1.58	9.10
NOx Emissions (kg)	0.40	0.36	0.70	0.31	1.77
VOC Emissions (kg)	0.47	0.43	0.84	0.37	2.11

Traffic Safety Benefit-Cost Calculation

Highway Safety Improvement Program (HSIP) Reactive Project

A. Roadway Description					
Route	CSAH 12 (109th Ave)	District	Metro	County	Anoka
Begin RP		End RP		Miles	2.340
Location CSAH 12 (109th Ave): CSAH 52 (Radisson) to CSAH 17 (Lexington)	CSAH 12 (109th Ave): CSAH 52 (Radisson) to CSAH 17 (Lexington)				

B. Project Description

Proposed Work Project Cost*	Reconstruct as a 4-lane Divided Roadway		
	\$9,580,000	Installation Year	2022
Project Service Life	20 years	Traffic Growth Factor	1.1\%
* exclude Right of Way from Project Cost			

C. Crash Modification Factor			
0.34	Fatal (K) Crashes	Reference CMF ID: 7566 (Convert 2 lane roadway to 4 lane divided ro	
0.34	Serious Injury (A) Crashes		
0.34	Moderate Injury (B) Crashes	Crash Type All	
0.34	Possible Injury (C) Crashes		
0.34	Property Damage Only Crashes		www.CMFclearinghouse.org

Fatal (K) Crashes	Reference	
Serious Injury (A) Crashes		
Moderate Injury (B) Crashes	Crash Type	
Possible Injury (C) Crashes		
Property Damage Only Crashes		www.CMFclearinghouse.org

E. Crash Data

Begin Date	1/1/2016		End Date	12/31/2018	3 years
Data Source	MnDOT				
	Crash Severity	All		< optional	
	K crashes		0		
	A crashes		1		
	B crashes		2		
	C crashes		3		
	PDO crashes		30		

F. Benefit-Cost Calculation

Proposed project expected to reduce 8 crashes annually, 1 of which involving fatality or serious injury.
F. Analysis Assumptions

| Crash Severity | Crash Cost | | |
| :--- | ---: | ---: | :--- | :--- |
| K crashes | $\$ 1,360,000$ | Link: | mndot.gov/planning/program/appendix_a.html |
| A crashes | $\$ 680,000$ | | |
| B crashes | $\$ 210,000$ | Real Discount Rate | 1.2% |
| C crashes | $\$ 110,000$ | Traffic Growth Rate | 1.1% |
| PDO crashes | $\$ 12,000$ | Project Service Life | 20 years |

G. Annual Benefit

Crash Severity	Crash Reduction	Annual Reduction	Annual Benefit
K crashes	0.00	0.00	$\$ 0$
A crashes	0.66	0.22	$\$ 149,600$
B crashes	1.32	0.44	$\$ 92,400$
C crashes	1.98	0.66	$\$ 72,600$
PDO crashes	19.80	6.60	$\$ 79,200$

H. Amortized Benefit

Year	Crash Benefits	Present Value
2022	$\$ 393,800$	$\$ 393,800$
2023	$\$ 398,289$	$\$ 393,567$
2024	$\$ 402,830$	$\$ 393,333$
2025	$\$ 407,422$	$\$ 393,100$
2026	$\$ 412,067$	$\$ 392,867$
2027	$\$ 416,764$	$\$ 392,634$
2028	$\$ 421,515$	$\$ 392,401$
2029	$\$ 426,321$	$\$ 392,169$
2030	$\$ 431,181$	$\$ 391,936$
2031	$\$ 436,096$	$\$ 391,704$
2032	$\$ 441,068$	$\$ 391,471$
2033	$\$ 446,096$	$\$ 391,239$
2034	$\$ 451,181$	$\$ 391,007$
2035	$\$ 456,325$	$\$ 390,776$
2036	$\$ 461,527$	$\$ 390,544$
2037	$\$ 466,788$	$\$ 390,312$
2038	$\$ 472,110$	$\$ 390,081$
2039	$\$ 477,492$	$\$ 389,850$
2040	$\$ 482,935$	$\$ 389,619$
2041	$\$ 488,441$	$\$ 389,388$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0		

Total $=\$ 7,831,797$

0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$
0	$\$ 0$	$\$ 0$

CMF / CRF Details

CMF ID: 7566

Convert 2 lane roadway to 4 lane divided roadway
Description: Conversion of urban and rural two-lane roadways to four-lane divided roadways

Prior Condition: 2 lane roadway

Category: Roadway

Study: Evaluation of the Safety Effectiveness of the Conversion of Two-Lane Roadways to Four-Lane Divided Roadways: Bayesian vs. Empirical Bayes, Ahmed et al., 2015

Crash Modification Factor (CMF)	
Value:	0.341
Adjusted Standard Error:	
Unadjusted Standard Error:	0.091

Crash Reduction Factor (CRF)

Adjusted Standard Error:	
Unadjusted Standard Error:	9.05
Applicability	
Crash Type:	All
Crash Severity:	All
Roadway Types:	Not specified
Number of Lanes:	2
Road Division Type:	Undivided
Speed Limit:	
Area Type:	Urban
Traffic Volume:	
Time of Day:	All
If countermeasure is intersection-based	
Intersection Type:	
Intersection Geometry:	
Traffic Control:	
Major Road Traffic Volume:	
Minor Road Traffic Volume:	

Development Details	
Date Range of Data Used:	2002 to 2012
Municipality:	

State:	FL	
Country:	USA	
Type of Methodology Used:	Before/after using empirical Bayes or full Bayes	
Sample Size Used:		

	Other Details
Included in Highway Safety	
Manual?	No
Date Added to Clearinghouse:	Nov-01-2015
Comments:	

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

1-Page Information Sheet: CSAH 12 Expansion in Blaine

PROJECT NAME: CSAH 12 (109 ${ }^{\text {th }}$ Avenue NE) Expansion to a 4-Lane Divided Facility GEOGRAPHIC LIMITS: 2.3 miles. From CSAH 52 (Radisson Road NE) to CSAH 17 (Lexington Avenue NE) PROJECT LOCATION: City of Blaine, Anoka County
APPLICANT: Anoka County Highway Department
FUNDING REQUEST: $\mathbf{\$ 7 , 6 6 4 , 0 0 0}$
TOTAL PROJECT COST: \$9,580,000

PROJECT DESCRIPTION

CSAH 12, an "A" Minor Arterial Expander route that provides an important east-west transportation connection in Anoka County, is a two-lane undivided roadway today. Traffic volumes on CSAH 12 have been increasing and are expected to continue to increase in the future as the area continues to grow (8,000 Current AADT, 10,000 2040 AADT). Existing and future traffic volumes are such that congestion is and will continue to negatively impact the ability of the corridor to move traffic. Safety is also a concern at several intersections and along some segments of the corridor.

This project will reconstruct a 2.3-mile section of CSAH 12 as a four-lane divided roadway, with intersection access modifications. The improved section would match that which currently exists to the west of the project, effectively eliminating a traffic bottleneck. The Blaine City Hall and Police Station are located within the project area. Improvements to CSAH 12 are critical to ensure that city services, especially those involving emergencies, maintain acceptable response times.

Non-motorized accommodations in the project area are non-existent. The project will close an existing gap in the non-motorized network by constructing a continuous six-foot ADA-compliant sidewalk on the north side of CSAH 12 and a continuous 10-foot ADA-compliant multi-use trail on the south side. The entire length of the project is located along a Tier 2 RBTN alignment. The RBTN provides important connections to regional job concentrations and the regional transit system. RBTN designations also denote strong demand for bicycle travel and represent opportunities to enhance local economic development and business retention. Separated facilities will ensure that CSAH 12's multimodal function, safety and person-throughput are enhanced. The project will also upgrade all signalized intersections with ADA-compliant pedestrian ramps, countdown timers, APS push buttons and high visibility durable pavement markings. ADA pedestrian ramps will also be included at non-signalized intersections.

Overall, the project will expand the existing roadway and integrate critical safety improvements to reduce crash risk exposure, while also improving safety and comfort for all users. The project will provide roadway users with reliable travel times at reasonable travel speeds. This project will help improve connectivity between residential, commercial and recreational areas along CSAH 12.

ANOKA CSAH 12 (109TH AVENUE NE) EXPANSION PROJECT

204 COMPREHENSIVE PLAN

growth potential is nearly identical to the Metropolitan Council's forecasted growth of 9,714 units from 2016 to 2040.

Figure 5-11: Additional Units factored into meeting 2040 Forecast

Total Forecasted Units (using density midpoint, from Table 5-9)	8,649
Total building permits issued for new units in 2016 a nd 2017	652
Lots that have been platted but are currently va cant	360
Impending development at 109th a nd Lexington	190
Total Expected $\mathbf{2 0 4 0}$ Unit Growth	$\mathbf{9 , 8 5 1}$

Growth Staging

The 2040 Comprehensive Plan anticipates the extension of sewers to the entire city except for a land trust site that will remain outside of the urban service area since it is protected from development. To plan for regional sewer system capacity, the Metropolitan Council requests that cities submit 10-year staging plans so that it can size the regional system to accommodate the projected growth. In a city with large amounts of vacant land, this often results in the creation of growth staging areas that are left unsewered until a particular time period or a certain development stage is reached. Since the 2040 Comprehensive Plan envisions access to sewers for all the developable areas of Blaine, this plan will not contain any growth staging areas. Development can occur City-wide and sewers can be constructed, as needed, for new development or to replace failing private systems.

The Metropolitan Council requests a forecast of development in ten-year increments, which is shown in Figure 5-12 and is meant to complement Figure 5-13. Within the planning timeframe 2017-2040, redevelopment expected from present to 2020 is the most well-known due to current development proposals, known areas of market interest, and many vacant platted lots, approved units and building permits issued in 2016 and 2017 that are very likely to see construction prior to 2020. For the remaining redevelopable land (that which corresponds with "Beyond 2020" in Figure 5-12), the table assumes that a significant portion of Low Density Residential redevelopment (80 percent) is likely to occur by 2030, and that all the Medium and High-Density redevelopment is likely to occur by 2030. These staging assumptions are based on current market trends and known development interest and momentum in the City.

From an infrastructure perspective, there are no significant staging considerations that would preclude any of the "Beyond 2020" area from redevelopment, although growth is expected first in areas adjacent to existing roadways and trunk lines. It is expected

Two critical connections were also raised during the community engagement. The first was a connection across Central Avenue in the southern portion of the city. People expressed a lack of good access from their neighborhoods to Aquatore Park. Therefore, the plan identifies the need for a connection. Also, a connection to Lexington Athletic Complex, across Lexington from the west was expressed as a key connection.

What does this mean for Blaine parks and trails system?

Blaine's park and trails system are advanced for a high growth community with a Suburban Edge growth designation. There are been a history of dedication to connecting where people live to where people want to travel, including commercial destinations, public institutions, and regional and local parks. The city of Blaine has had a long-term vision of connecting to these community assets, and intends to continue that tradition into the next 25 years.

In addition to changing demographics and input from the community, the regional trail and park system also play a role in guiding future infrastructure planning. As it specifically relates to trails, there are two regional bike network alignments identified in Blaine. One is along the University Avenue corridor. This is an existing off-road trail that connects many neighborhoods in western Blaine to the Blaine High School and Bunker Hills Regional Park. The second Regional Bike Transportation Network alignment is along $109^{\text {th }}$ Avenue. A portion of that is constructed as off-road sidewalk linking University to Quincy. From Quincy, the connection becomes off road trail, across Central to Radisson Road. Long term, the crossing at Central is something for the city to examine, as the traffic volumes and speeds are not conducive to safe crossing for bicyclists or pedestrians.

The figure below outlines the existing parks and trails system, as well as future parks and trails within the city. It does not include future neighborhood parks, as those are reviewed and designed upon development.

EXISTING PARKS and Trails

State Lands
Blaine Airport Rich Fen Scientific and Natural Area: Adjacent to the Blaine Airport, this scientific and natural area (SNA) is located in a perpetual conservation easement dedicated by the Metropolitan Airports Commission.

The SNA is 47.9-acres and contains two state-endangered species, the lance-leaved violet and tubercled rein-orchid, as well as a special concern species, the marginated

Figure 6-1: Parks and Trails System

Existing Capacity Issues on Arterial Roads

At the planning level, capacity issues are identified by comparing the existing number of lanes with current traffic volumes. Figure 7-4 and Figure 7-6 illustrate the existing number of lanes on arterial roadways within the Blaine. Figure 7-5 illustrates existing traffic volumes on Principal Arterial, A-Minor Arterials and other significant roadways within Blaine.

Most of the arterials in Blaine currently exhibit traffic volumes below or within the range of the planning level capacity thresholds shown in Figure 7-3; however, the principal arterial roadways do exceed these thresholds. I-35W, US Highway 10, and TH 65 all exhibit daily traffic volumes that currently meet or exceed capacity thresholds, and are currently experiencing higher levels of congestion during peak travel periods. The MnDOT Metropolitan Freeway System 2015 Congestion Report identifies one to two hours of reoccurring congestion along I-35W and US Highway 10.

Figure 7-6: EXISting Number of Lanes on arterial roads

Functional Classification	Roadway Name	Location	Number of Lanes
Principal Arterial	I-35W	Blaine-Shoreview border to Blaine-Lino Lakesborder	4
	US Highway 10	Blaine-Coon Rapids border to BlaineMounds View border	6
	TH 65 (Central Avenue)	Bla ine-Spring Lake Park border to Bla ineHam Lake border	4-6
	125th Avenue (CSAH 14)	Blaine-Coon Rapids border to BlaineLino Lakes border	2-4
"A" Minor Expander	Radisson Road NE (CSAH 52)	I-35W to Blaine-Ham Lake border	4
	Lexington Avenue (CSAH 17)	Blaine-Shoreview borderto Blaine-Ham Lake border	4-6
	109th Avenue/Sunset Avenue (CSAH 12)	Blaine-C oon Rapids border to BlaineLino Lakesborder	2-4
	85th Avenue (CSAH 32)	TH 65 to Blaine-Circle Pines border	2-4
	University Avenue (TH 47)	Blaine-Spring Lake Park border to Bla ine-Coon Ra pids border	4
"A" Minor Reliever	University Avenue (CSAH 51)	County Road 10 (CSAH 10) to 125th Avenue (CSAH 14)	4
	County Road 10 (CSAH 10)	Blaine-Coon Rapids border to BlaineSpring Lake Park border	4
	Lake Drive (CSAH 23)	I-35W to Bla ine-Lexington border	4
"Other" Arterial	University Avenue (County Road 3)	University Avenue (TH 47) to County Road 10 (CSAH 10)	4

Existing Safety and Operational Issues on Arterial Roadways
Most safety and operational issues within Blaine occur on the arterial roadway network, which also handles the highest amounts of daily traffic. Major roadways (I-35W, US Highway 10, TH 65, University Avenue, 109th Avenue, Radisson Road NE, and 125th Avenue) and intersections with these roadways experience the majority of crashes within Blaine. On-going monitoring of crashes and further study is recommended to identify specific safety issues and design, intersection control or other countermeasures that could be effective at reducing the rate and severity of crashes at these locations. The City of Blaine will continue to work with MnDOT and Anoka County to identify potential safety and operational improvements that may be identified as part of planning studies or implemented as part of programmed improvements.

Future Roadway System

This section addresses future roadway improvement needs and roadway design guidelines.

Roadway Capacity Needs - Traffic Forecasting

To determine future roadway capacity needs, year 2040 traffic forecasts were provided by the Metropolitan Council travel demand model. The 2040 projections were compared against the assumed 2040 roadway network to identify where roadway segment capacity deficiencies may result. The 2040 roadway network assumed for this analysis is the same as the current roadway network; however, the Current Revenue Scenario includes the installation of MnPASS lanes on I-35W north to Sunset Avenue, and the additional capacity provided by these improvements is included in modeling of the future roadway network.

A central concept of travel demand forecasting is the use of Transportation Analysis Zones (TAZs). Each forecast study area, the City of Blaine in this case, is divided into a series of TAZs. Each TAZ has socio-economic population, employment, and household data that is used by the model to assign trips to the various network roadways. Figure 7-10 displays Metropolitan Council TAZs within Blaine.

The results of the Metropolitan Council travel demand model process are summarized in Figure 7-11, which displays Metropolitan Council 2040 projected Average Daily Traffic (ADT) volumes and existing (2014) traffic volumes for Principal Arterial and A-Minor Arterial roadways. Areas of associated forecasted congestion based on the planning level capacities are also identified in Figure 7-11 based on the planning level thresholds identified in Figure 7-3.

As Illustrated in Figure 7-11, there are many roadways within Blaine with segments that will meet or exceed their planning level capacity to accommodate forecasted Metropolitan Council 2040 travel demands. These include US Highway 10, TH 65, Interstate 35W, Radisson Road NE, 125th Avenue, Lexington Avenue, North Road past Centennial High School, County Road J, Davenport Street NE and Sunset Avenue.

There is justification for more detailed corridor level analysis of all these identified corridors to confirm the purpose and need for providing additional capacity. These corridor studies should assess in greater detail access, intersection operations, bicycle/pedestrian needs, transit needs, freight needs, community and neighborhood sentiment, adjacent land use and a variety of other factors that cannot be adequately addressed in a system-wide planning study of this nature.

Existing and Planned Non-Motorized Transportation Network

This section addresses network needs for walking and bicycling within Blaine. This section also addresses the needs of people using wheelchairs and assistive mobility devices such as mobility scooters, as they are considered pedestrians.

Enhancing the non-motorized elements of the Blaine transportation system is a key goal in terms of improving transportation sustainability in the city and in the region. This approach gives residents an alternative to driving, supports transportation options for people who do not have consistent access to a personal vehicle, and encourages healthy activities and lifestyles.

This section includes information on the existing non-motorized transportation network within Blaine, connections to land use planning, the planned local non-motorized transportation network, and the planned regional non-motorized transportation network. This section also includes recommendations and design best practices.

Existing Non-Motorized Transportation Network

The non-motorized transportation network in Blaine is comprised of sidewalks and multi-use paved trails. As shown in Figure 7-13, there are approximately 76 miles of sidewalks and 57 miles of trails. While the sidewalk and trail network is quite extensive, many older neighborhoods were developed without the inclusion of sidewalks in residential areas. More recent residential areas are more likely to include sidewalks as in the TPC and Club West developments. Trails have been developed in newer residential developments and along city collector roadways and county highways. Major trail routes that provide city-wide connections include Radisson Road NE, Lexington Avenue, 85th Avenue, and Lakes Parkway, as well as portions of 109th Avenue, 125th Avenue, and University Avenue.

Within the City of Blaine there are several nodes that support connections via sidewalk or trail. In addition to schools and parks, other important nodes include the National Sports Center, Town Square (City Hall), Northtown Shopping Center, the Village Shopping Center, and commercial node at TH 65 and 125th Avenue. The sidewalk and trail system currently provides some connections to these facilities, but access could be improved with the completion of current system gaps.

Major highways such as I-35W and US Highway 10 serve as barriers for bicyclists and pedestrians due to limited opportunities to cross the roadway. This affects nonmotorized by increasing the distance required to reach a destination, which may lead to avoidance or using vehicles to make the trip. TH 65 also serves as a major barrier
for bicyclists and pedestrians. Non-motorized facilities do not exist along TH 65, and most intersections have limited pedestrian accommodations with several lanes of traffic to cross. This makes the experience feel unsafe and difficult for many individuals. While TH 65 does not support bicyclists and pedestrians, the streets that serve as frontage roads along the east and west sides of TH 65 do serve the purpose of providing northsouth connections along TH 65 for pedestrians and bicyclists. However, the network is not continuous; sidewalk and trail extensions are needed to adequately serve bicycle and pedestrian needs.

Connections to Land Use Planning

Blaine has development patterns consistent with its designation as a Suburban Edge community. In many areas of the city, existing residential development is lower in density compared with many urban areas, reflecting a community that has developed relatively recently. Environmental features and the large land area that the airport encompasses contribute to greater distances between different land uses. In addition, most commercial land uses are separated from largely single-family residential land uses. This means that people walking and bicycling must cover greater distances to reach commercial areas from their homes. In these areas of the city, development patterns are likely better suited to bicycling than walking for transportation trips.

As Blaine continues to develop or redevelop, the inclusion of sidewalks and trails is an important consideration to accommodate pedestrian and other non-motorized movement in a safe manner, separate from vehicular traffic. The City supports completing gaps in the system network when opportunities arise, such as through development and roadway reconstruction projects. The City's land use planning and coordination with developers can help improve opportunities for walking and bicycling for transportation. The City can encourage mixed-use development that situates residents within a short walk of commercial destinations. The City can also work with developers to construct sidewalks and trails within developments. Additionally, the City can require pedestrian and bicycle connections in areas where the roadway network does not connect, such as cul-de-sac connector trails that provide shortcuts for people walking and bicycling.

Planned Local Non-Motorized Transportation Network

Blaine's planned non-motorized transportation network of sidewalks and trails is shown in Figure 7-13. When the network is complete, it will improve connectivity between residential areas and commercial, institutional, and recreational areas. This includes filling existing network gaps and adding new facilities in developing areas. The network will improve options for people to walk and bicycle for transportation within the city, and facilitate regional connections (described in greater detail in the following section).

The planned sidewalk and trail network shows the extension of the system along the TH 65 frontage road network. Additional opportunities to extend sidewalks and trails along the frontage road network for Trunk Highway 65 should be explored, as well as additional opportunities for grade separated bicycle/pedestrian crossings of the highway.

The City will explore other opportunities to improve the bicycle and pedestrian environment.

Planned Regional Non-Motorized Transportation Network

The Metropolitan Council 2040 TPP encourages the use of bicycles as a transportation mode and establishes the Regional Bicycle Transportation Network (RBTN) as an integrated network of on-street bikeways and off-road trails that complement each other and provide connections across the region. The RBTN identifies Tier 1 and Tier 2 alignments where existing regional or other trails exist or where a specific alignment has been identified. The RBTN also identifies Tier 1 and Tier 2 corridors where specific alignments have not yet been defined.

In 2017, revisions to the RBTN were proposed as part of the 2040 TPP Update to better align the network with county and city plans. At the western border of Blaine, the RBTN identifies a Tier 1 RBTN alignment along University Avenue and then extending southeast along County Road 10. Tier 2 RBTN alignments are identified along 85th Avenue east of Hastings Street, 109th Avenue between University Avenue and Lexington Avenue, Lexington Avenue, and 125 th Avenue. Most of these corridors have existing trails, however some gaps remain. There is also a RBTN Tier 2 corridor generally running along the southern city border west of Hastings Street. Recent revisions include adding Tier 2 RBTN corridors generally along the TH 65 corridor and the Lake Drive corridor. The RBTN map also identifies three regional destinations within the city: I-35 W and Highway 10 (a regional job center), the Blaine National Sports Center (a sports and entertainment complex), and Blaine High School. The updated existing and proposed regional network is shown in Figure 7-14.

ANOKA COUNTY 2040 TRANSPORTATION PLAN UPDATE

FINAL REPORT - November 2019

The 2040 Transportation Plan is Anoka County's highest level policy plan for transportation. This plan communicates the transportation system needs and sets goals, priorities, and funding strategies to guide the County's infrastructure investments over the next several decades. It also enables other public and private organizations to plan their activities in coordination with the County.

1.1 PLAN UPDATE PROCESS

State law requires that all incorporated cities, counties, and townships within the sevencounty metropolitan region must update their Comprehensive Plans every ten years to align with the Metropolitan Council's regional system plans for highways, transit, airports, wastewater services, and parks. Anoka County's transportation plan was last updated in 2009. This update is focused on addressing the requirements outlined in the Metropolitan Council's Local Planning Handbook for 2017 and preparing an implementation plan that is reflective of the continued funding constraints faced by the County, the local communities, and the State. This update has also been guided by a Project Management Team which consisted of participants from the following organizations: Anoka County Highway Department, Anoka County Department of Parks and Recreation, Anoka County Transit, Metropolitan Council, the Minnesota Department of Transportation (MnDOT), and consultant team.

1.2 RELATIONSHIP TO THE FIVE-YEAR IMPROVEMENT PROGRAM

The Anoka County Highway Department Five-Year Improvement Program is published annually and identifies upcoming projects. The goals and recommendations identified in this 2040 Transportation Plan will form the basis of future five-year improvement program documents.

1.3 PARTNERS

Implementing the strategies identified in this plan requires partnerships. As shown on Figure 1, Anoka County is comprised of 20 cities and one township. Throughout the entire update process, Anoka County sought input from the public and transportation partners. This effort included individual meetings with staff from each city at the onset of the planning process to discuss planned development activities and to gain a better understanding of the priorities of each city as it relates to this planning process. These meetings are discussed in more detailed in Section 5.1.

Furthermore, at the conclusion of the plan's preparation, Anoka County circulated a draft for review and comment by partnering agencies. Additional coordination occurred and revisions to the plan were made, as deemed appropriate. See Appendix L for a list of jurisdictions that received a copy of the draft plan.

Regional Bicycle Transportation Network

The Metropolitan Council's Regional Bicycle Transportation Network (RBTN), the region's vision for regional bikeways, is shown in Figure 12 for Anoka County (further details are provided in Appendix H). The RBTN is made up of a series of specific alignments and broad planning corridors and includes regional destinations the network is intended to connect. The purpose of the RBTN is threefold:
» To establish an integrated/seamless network of on- and off-street bikeways;
» To provide the vision for a "backbone" arterial network for daily bicycle transportation; and
» To encourage cities, counties, park agencies, and the state to plan and implement future bikeways.

The RBTN corridors are established where existing or potential high demand for transportationrelated bicycle trips has been identified and where specific alignments have not been implemented by local agencies. This network is intended to provide mid-to-long range connections to and between major regional destinations. RBTN alignments were established to represent where local plans have identified existing or planned off-street trails or on-street bikeways.

The network is further divided into Tier 1 and Tier 2 alignments and corridors based on potential bicycle demand levels as determined in the Metropolitan Council's Regional Bicycle System Study (2014). There are more than 1,300 miles of designated regional bicycle network corridors and alignments across the Twin Cities Region. This compares very favorably with other metro regions around the nation that have established regional bicycle networks. Further information regarding the RBTN can be found at: https://metrocouncil.org/transportation/planning-2/key-transportation-planning-documents/bike-pedestrian-plans/rbtn.aspx

[^0]

EXISTING REGIONAL BICYCLE TRANSPORTATION NETWORK

Anoka County's transportation system is affected by many factors within and outside the county. Conversely, decisions regarding the county's transportation system affect transportation in the local communities, surrounding counties, the region, and to some extent, the state. Recognizing the context of this Plan, Anoka County staff collaborated with many different groups during plan development to ensure a final product that best serves the county, the communities within the county, the region and the state. This section provides an overview of this collaboration.

5.1 COORDINATION WITH ANOKA COUNTY COMMUNITIES

Similar to Anoka County, all cities are required to submit updated Comprehensive Plans to the Metropolitan Council. In Anoka County, land use control is the jurisdiction of the cities. This requires cities and the county to work together to facilitate coordinated transportation facility planning.

Recognizing the importance of the interrelationship between the County and local communities, early in the planning process the County arranged meetings with the communities to discuss current transportation issues and priorities and review the TAZ data assembled for each community by the Metropolitan Council. Over 20 meetings were held over a two month period. Table 1 in Appendix I provides a summary of these meetings, including the staff who participated, the status of their TAZ data, and issues and priorities discussed.

[^1]Some of the primary items and issues discussed at these coordination meetings included:
» Development has not occurred as projected during the year 2030 comprehensive planning process - as a result, the trend for continued expansion of the county highway system is not as significant as in the past;
» An increasing trend appears to be conversion of underutilized commercial/retail land to multi-family residential;
» Managing commuter traffic that is using county and city roads to avoid congestion on the major highways;
» Increased safety needs for multi-modal transportation infrastructure on arterial roadways;
» Need to enhance capacity on TH 10, TH 65 and TH 47; and
» Need for spot intersection improvements to address congestion and safety concerns (need for traffic signals or roundabouts).

5.2 PUBLIC INVOLVEMENT

An information meeting was held on March 28, 2018 during the development of the 2040 Transportation Plan. This meeting introduced the planning effort, the purpose and goals of the Plan, and the results of the technical analyses completed as part of the process. Comments from attendees at the meetings were also collected and considered by the Project Management Team (PMT).

A web page devoted to the Plan was developed and housed on the study consultant's web site. This page was updated periodically and also provided

Anoka County Government Center (Source: Anoka County) the opportunity to comment on the Plan. The website link is: www.sehinc.com/ online/2040

1 City - County Coordination Meetings

Recognizing the importance of the interrelationship between the County and local communities, early in the planning process the County arranged meetings with the communities to discuss current transportation issues and priorities and review the transportation analysis zone (TAZ) data assembled for each community by the Metropolitan Council. In total, 20 meetings were held over a two month period. Table 1 provides a summary of these meetings, including the staff who participated, the status of their TAZ data, and issues and priorities discussed.

Table 1 - City - County Coordination Meetings Summary of Key Issues

City [Participants]	TAZ Status	Key Issues and Priorities
Ramsey [Tim Gladhill (Comm Dev Dir), Bruce Westby (Engineer), Chris Anderson (Planner)]	City will provide adjustments late May	- Highway 10 is the top priority (CSAH 56 and CSAH 57 interchanges) - CSAH 56 and CSAH 57 railroad grade separations need to advance regardless of interchanges - Highway 47 and CSAH 5 are also priorities (identified several intersections along Highway 47 and CSAH 5 that need to be analyzed for improvements) - CSAH 116 Bridge needs a right turn lane - Would like a new Rum River Bridge identified as a long term need (corridor preservation) - Identified several intersections along Highway 47 and CSAH 5 that need to be analyzed for improvements
Lino Lakes [Mike Grochala (Comm Dev Dir), Katie Larsen (Planner), Diane Hanke (Engineer)]	No major adjustments anticipated. Will send any refinements by end of May	- CSAH 32 turnback from City to County is desired by the City - In favor of roundabouts at I-35E/CSAH 32 interchange ramps (ramps to/from north are not a priority - CSAH 32/CSAH 21 intersection is a priority (ICE study nearly complete) - CSAH 32/CSAH 49 intersection will need further improvements in the coming years - Interested in flattening S-curves on CSAH 32 - CSAH 34 is a continued priority (intersection improvements) - Development pressure in increasing on CSAH 14 west of CSAH 23
Spring Lake Park [Dan Bucholtz (Administrator), Phil Gravel (Engineer)]	No adjustments anticipated	- CSAH 35 north of 81st Ave is in very poor condition - Further coordination is required regarding 4-lane to 3-lane restriping project on CSAH 8 (trail improvements are a priority for the City) - TH 65 southbound lane drop at CSAH 10 ramp is a continued operational/safety issue - Proposed multi-family development will put more demand on signal at CSAH 10 and Able Street
Oak Grove [Loren Wickham (Administrator)]	No adjustments anticipated	- Some residents concerned about planned RCI project at TH 65/CSAH 22 (east of City)
Centerville [Greg Burmeister (Maintenance), Paul Palzer (PW Dir)]	No adjustments anticipated	- Traffic diverts from I-35E/CSAH 14 interchange to parallel roads - Experiencing substantial traffic increases from Lino Lakes development

City [Participants]	TAZ Status	Key Issues and Priorities
East Bethel [Colleen Winter (Comm Dev Dir), Craig Jochum (Engineer)]	No adjustments anticipated	- City has identified three growth management areas along TH 65 at CSAH 22, CR 86, and CSAH 26). CSAH 22 area has enough land to accommodate growth through 2040. - MnDOT is moving forward with first signalized RCI intersection(s) in the State at TH 65/CSAH 22. - City is developing a supporting local road system in the TH 65/CSAH 22 intersection area - Majority of safety concerns expressed by residents with CSAH 26 and CR 15 west of TH 65 (sharp curves)
Nowthen [Jeff Pillon (Mayor), Corrie LaDoucer (Clerk), Shane Nelson (Engineer), Elizabeth Stockman (Planner)]	No adjustments anticipated	- Cut-through traffic avoiding Highway 169 in Elk River is a key concern. - Support concept of connecting CSAH 22 to the Highway 169/CSAH 33 interchange in Sherburne County - City will not be receptive to any turnback proposals given funding constraints - Will be a continued challenge to accommodate development demand along CSAH 22 and the County's access management guidelines - CSAH 22/CR 66 intersection is a safety issue (poor sight distance)
Blaine [Erik Thorvig (Econ Dev Dir), Bryan Schafer (Comm Dev Dir), Dan Schluender (Asst Engineer), Steffen Higgins (Asst Engineer)]	Population totals in NE section of City are too high. Provide adjustments to County by end of June	- TH 65/CSAH 12 interchange is the top priority - Safety concerns at CSAH 52/Xylite Ave intersection - Traffic signals will likely be warranted in the future at CSAH 17/117th Ave and CSAH 14/North Lakes Road - Extension of Sunset Avenue is not a priority - Need for more capacity on CSAH 12 west of CSAH 17 - City supports improvements at the I-35W/85th Ave interchange - This plan will need to determine need for expanding CSAH 14 between CSAH 17 and Harpers Road is a priority - The City is expanding the CSAH 14/Harpers Road intersection - Need to determine if signals on CSAH 52 at Cloud Drive and 116th Ave are warranted - Jefferson Avenue will be extended south from CSAH 14 when development occurs on 40-acre vacant parcel - Lane drop on southbound TH 65 at CSAH 10 is a safety issue - Old K-Mart site at Northtown will be redeveloped as a mix of commercial and residential uses
Columbia Heights [Elizabeth Holmbeck (Planner), Kevin Hansen (PW Dir)]	No adjustments are anticipated	- CSAH 2 is the top priority (two lanes in each direction is not needed). City is interested in idea of restriping to a three-lane section. - CSAH 4 west of TH 65 needs resurfacing - Schools on CSAH 4 present pedestrian safety and peak period traffic challenges - Interested in trail improvements on CSAH 102

Appendix H

Regional Bicycle Transportation Network (RBTN)

Regional Bicycle Transportation Network (RBTN) - Alignments			
Tier	Type and Location	Segment	Trail Status
		CSAH 14 / Rice Creek Chain of Lakes Regional Trail	- South side trail, north side sidewalk from Centerville Road to $20^{\text {th }}$ Avenue N - South side trail complete from $20^{\text {th }}$ Avenue N to Otter Lake Road - North side trail complete from Otter Lake Road to $24^{\text {th }}$ Avenue N
2	RBTN Alignment - West-East - Rice Creek West Regional Trail from East River Road / Rice Creek Way NE to Stinson Blvd. NE / 69 ${ }^{\text {th }}$ Avenue NE	Rice Creek West Regional Trail	Trail complete but for use of Rice Creek Way NE
2	RBTN Alignment - West-East - Along $109^{\text {th }}$ Avenue NE from University Avenue NE to Lexington Avenue NE	$109^{\text {th }}$ Avenue NE from University Avenue NE to Lexington Avenue NE	- Sidewalks north and south sides from University Avenue NE to Quincy Blvd. NE - Trail south side from Quincy Blvd. NE to Ulysses Street NE - Trail south side and sidewalk north side from Ulysses Street NE to Davenport Street NE - Trail south side from Davenport Street NE to Mankato Street NE - Trail south side, sidewalk north side from Mankato Street NE to Radisson Road NE - No trail from Radisson Road NE to Lexington Avenue NE

Appendix L

Public Notice Affidavit
Jurisdictional Review Distribution list
Initial Jurisdictional Review Comments Final Jurisdictional Review Comments

AFRIDAVIT OF PUBLICATION

STATE OF MINNESOTA. COUNTY OF ANOKA.

ANOKA COUNTY
NOTICE OF PUBLIC HEARING
ANOKA COUNTY 2040
TRANSPORTATION
SYSTEM PLAN
Darlene MacPherson being duly sworn on an oath, states or affirms that he/she is the Publisher's Designated Agent of the newspaper(s) known as:

Anoka County Union Herald

with the known office of issue being located in the county of:

ANOKA
with additional circulation in the counties of:
ANOKA
and has full knowledge of the facts stated below:
(A) The newspaper has complied with all of the requirements constituting qualification as a qualified newspaper as provided by Minn. Stat. $\$ 331$ A. 02.
(B) This Public Notice was printed and published in said newspaper(s) once each week, for 2 successive week(s); the first insertion being on 12/07/2018 and the last insertion being on 12/14/2018

MORTGAGE FORECLOSURE NOTICES
Pursuant to Minnesota Stat. $\$ 580,033$ relating to the publication of mortgage foreclosure notices: The newspaper complies with the conditions described in $\$ 580.033$, subd, 1, clause (1) or (2). If the newspaper's known office of issue is located in a county adjoining the county where the mortgaged premises or some part of the mortgaged premises described in the notice are located, a substantial portion of the newspapor's circulation is in the latter county.

Subscribed and sworn to or affirmed before me on 12/14/2018 by Darlene MacPherson.

If you need an accommodation due to a dlasability, or pinted material In an alternative format, please contect the Anoka County Administration Office at 763-324-4000 (TDDनTY \# 1-800-877-8339). Dan Kilnt Jarry Soma
Assistant County Altorney
County Adminlistrator
Published in the
Anoka County UnlanHerald
December 7, 14, 2018 886106

Rato Information:
(1) Lowest elassified rate paid by cormmercial uaers for comparable space:
$\$ 20.00$ per column inch

Anoka County Highway System ADA Transition Plan

SELF-EVALUATION CONDITION ASSESSMENT

Overview

The Anoka County Highway Department is required, under Title II of the Americans with Disabilities Act (ADA) and 28 CFR 35.105, to perform a self-evaluation of its current transportation infrastructure policies, practices, and programs. This self-evaluation will identify what policies and practices impact accessibility and examine how the County implements these policies.

The goal of the self-evaluation is to verify that, in implementing the County's policies and practices, the County's highway department is providing accessibility and not adversely affecting the full participation of individuals with disabilities.

The self-evaluation also examines the condition of the County's Pedestrian Circulation Route/Pedestrian Access Route (PCR/PAR) and identifies potential need for PCR/PAR infrastructure improvements. This includes consideration of the curb ramps, traffic control signals, and transit facilities that are located within the County rights of way. Any barriers to accessibility identified in the self-evaluation and the remedy to the identified barrier are set out in this transition plan.

Summary

In 2017, the Anoka County Highway Department conducted an inventory of pedestrian facilities within its public right of way consisting of the evaluation of the following facilities:

- Pedestrian Ramps at street crossings that include trail or sidewalk facilities
- Traffic Control Signal Systems

Pedestrian ramps were assessed and categorized into three condition rating tiers:
Tier 1: largely or fully compliant - Good
Tier 2: substantially compliant and working well - Fair
Tier 3: several elements are not compliant - Poor
Traffic Control Signal Systems were assessed and categorized into three condition rating tiers by ramp corners and for the entire intersection.

Condition Rating for Traffic Signal System Elements by Ramps at Intersection Corners:
Tier 1: all signal elements are largely or fully compliant - Good
Tier 2: no more than one signal element is non-compliant - Fair
Tier 3: two or more signal elements are non-compliant - Poor

Condition Rating for Signalized Intersections:

Tier 1: all signal elements for intersection are largely or fully compliant - Good
Tier 2: no more than one signal element for intersection is non-compliant - Fair
Tier 3: two or more signal elements for intersection are non-compliant - Poor

A detailed evaluation on how these facilities relate to ADA standards can be found on the County's website (http://www.anokacountyada.com), and/or detailed in Appendix B and will be updated periodically.

POLICIES AND PRACTICES

Previous Practices

Since the adoption of the ADA, the Anoka County Highway Department has striven to provide accessible pedestrian features as part of its highway improvement projects. As additional information was made available as to the methods of providing accessible pedestrian features, the ACHD has updated their procedures to accommodate these methods. Recently, more standardized design and construction methods have evolved. This has resulted in the ability of local agencies to receive additional exposure and training on accessible features. This has improved the ACHD's ability to understand available options and to explore the feasibility of implementing accessibility improvements. This information also assists in providing guidance for developing transition plans.

Policy

The ACHD will inspect, inventory and plan for any required improvements to facilities located in the public right-of-way, to ensure compliance with the ADA. The County's goal is to continue to provide accessible pedestrian design features as part of the County highway improvement plan projects. The ACHD has established ADA design standards and procedures as detailed in Appendix C. These standards and procedures will be kept up to date with nationwide and local best management practices.

The ACHD will consider and respond to all accessibility improvement requests. Requests should be sent to the ADA Coordinator as specified in Appendix D. All accessibility improvements that have been deemed reasonable will be scheduled consistent with transportation priorities. The ACHD will coordinate with external agencies as necessary to ensure that all new or altered pedestrian facilities within the ACHD jurisdiction are ADA compliant to the maximum extent feasible.

Maintenance of pedestrian facilities within the public right of way will continue to follow the policies set forth by the County. In general, the cities are responsible for snow removal operations for pedestrian facilities on county highways within each city.

The Anoka County Highway department will maintain and update the facility database to reflect improvements to inventoried facilities.

ADA COORDINATOR

In accordance with 28 CFR 35.107(a), the ACHD has identified an ADA Title II Coordinator to oversee the ACHD policies and procedures. It is the responsibility of the ADA Coordinator to implement this policy. Contact information for this individual is listed in Appendix \mathbf{D}.

IMPROVEMENT SCHEDULE

Priority Areas

A tier system which categorizes the level of compliance for pedestrian ramps and signal systems was developed to assist the ACHD with prioritizing limited funds for improvements of its pedestrian facilities.

Additional priority will be given to any location where an improvement project or alteration was constructed after January 26,1991 , and accessibility features were omitted.

External Agency Coordination

Many other agencies are responsible for pedestrian facilities within the jurisdiction of Anoka County, including Minnesota Department of Transportation (MNDOT), multiple Cities and townships, and transit providers such as Metro Transit. The ACHD will coordinate with those agencies to assist in the facilitation of the elimination of accessibility barriers along their routes and/or associated with their services.

Schedule Goals

The ACHD has set the following schedule goals for improving the accessibility of its pedestrian facilities within the County jurisdiction:

- Traffic signal pedestrian features will be addressed through the Highway Improvement Plan (HIP)
- Facilities with condition ratings in Tier 2. These facilities are considered serviceable and are not in need of immediate action. Improvements for these facilities will be addressed in conjunction with adjacent highway improvement projects. ACHD staff will use the HIP to coordinate these improvements.
- Facilities with condition ratings in Tier 3. Any of these facilities identified as an existing hazard or compliance issue that ACHD staff believes needs to be addressed by a set date shall have a work order initiated or be incorporated into a project in the HIP.

IMPLEMENTATION SCHEDULE

Methodology

The ACHD will utilize two methods for upgrading pedestrian facilities to the current ADA standards. The first and most comprehensive of the two methods are the scheduled Highway Improvement Plan projects. All pedestrian facilities impacted by these projects will be upgraded to current ADA accessibility standards. The second method includes standalone sidewalk and ADA accessibility improvement projects. These projects will be incorporated into the Highway Improvement Plan on a case by case basis as determined by ACHD staff, or may be completed by internal County forces or cities who maintain the facilities. The Highway Improvement Plan includes a detailed schedule and budget for specific improvements.

PUBLIC OUTREACH

The ACHD recognizes that public participation is an important component in the development of this plan. Input from the community has been gathered and used to help define priority areas for improvements within the jurisdiction of Anoka County. Materials from public outreach activities are included in Appendix F.

Public outreach for the creation of this document consisted of the following activities:

- ADA Transition Plan Open House October 30, 2017
- ADA Transition Plan Website
- No formal comments were submitted via the website or at the public open house.
- The County's ADA Title II Coordinator will continue to be available for questions or discussion.

GRIEVANCE PROCEDURE

Under the Americans with Disabilities Act, each agency is required to publish its responsibilities in regard to the ADA. This public notice is provided in Appendix \mathbf{G} and is available at Anoka ADA Legal Notice. If users of Anoka County Highway department facilities and services believe the County has not provided reasonable accommodation, they have the right to file a grievance.

In accordance with 28 CFR $35.107(b)$, the ACHD has developed a grievance procedure for the purpose of the prompt and equitable resolution of citizens' complaints, concerns, comments, and other grievances. This grievance procedure is outlined in Appendix H, with a Complaint Form

APPENDICES

A. Glossary of Terms
B. Self-Evaluation
C. Agency ADA Design Standards and Procedures
D. ADA Coordinator
E. Prioritization Summary
F. Public Outreach Materials
G. ADA Public Notice
H. Grievance Procedure
I. Complaint Form

Appendix B - Self-Evaluation

Details of the condition assessment of the traffic signals and pedestrian facilities adjacent to roadway corridors can be found at the County's ADA Transition Plan webpage:
http://www.anokacountyada.com
A summary of the condition assessment is also included on the following pages.

Appendix F - Public Outreach Material

The following pages include poster boards, maps, and other materials that were used at public meetings or as part of other outreach activities.

The Americans with Disabilities Act (ADA), enacted on J uly 26, 1990, is a civil rights law prohibiting discrimination against individuals on the basis of disability.

As a provider of public transportation services and programs, the Anoka County Highway Department must comply with this Act, and has developed a Transition Plan detailing how the County will ensure that all facilities are accessible to all individuals.

The Anoka County Highway Department must meet these general requirements for individuals with disabilities:

- Access to all public programs and places
- Modification of policies that deny equal access
- Effective communication procedures
- An ADA Coordinator that coordinates ADA compliance
- Public notice of ADA requirements
- Grievance procedure for resolution of complaints

The Anoka County Highway Department's goal is to provide ADA-accessible pedestrian design features as part of the County'scapitalimprovementprojects(CIP). Thesestandards and procedures will be kept up to date with nationwide and local best management practices.

The Anoka County Highway Department's ADA improvements are based on projects identified in the County capital improvement projects (CIP) listing and will be addressed using the following criteria:

- All new construction projects and County reconstruction projects with pedestrian facilities will be designed and constructed to conform with the most current ADA design practices to the extent feasible.
- ADA improvements on county rehabilitation or resurfacing projects will be addressed on a case-by-case basis.
- ADA improvements requested by the public will be evaluated by Anoka County Highway Department staff. Evaluation criteria will include pedestrian volumes, traffic volumes, condition of existing infrastructure and public safety.

Anoka County Goals:

- After 5 years, items identified in the County Improvement Plan will be ADA-Compliant.
- After 20 years, 80 percent of accessibility features within the jurisdiction of the County will be ADA compliant.

Without these basic ramp elements, sidewalk travel can be dangerous, difficult, and in some cases impossible for people who use wheelchairs, scooters and other mobility aids.

Curb ramps allow people with mobility impairments to gain access to the sidewalks and to pass through center islands in streets. Without accessible ramps, these individuals are forced to travel in streets and roadways, are put in danger, and/or are prevented from reaching their destination.

Anoka County has identified an ADA Title II Coordinator to oversee County Highway Department policies and procedures:

I ack Forslund

Anoka County Transportation Division
1440 Bunker Lake Boulevard, NW
Andover, MN 55304
Phone: 763-324-3179
Fax: 763-324-3020
E-mail: jack.forslund@co.anoka.mn.us
More information is available at: www.AnokaCountyADA.com

BOARD OF COUNTY COMMISSIONERS Anoka County, Minnesota

DATE: April 14, 2020

AUTHORIZING SUBMITTAL OF A FEDERAL FUNDING APPLICATION FOR THE CSAH 12 EXPANSION PROJECT

WHEREAS, CSAH 12 (109^{TH} Avenue NE) is an "A" Minor Arterial Expander route that provides an important east-west transportation connection in Anoka County; and,

WHEREAS, traffic volumes on CSAH 12 have been increasing over the past decade and are expected to continue to increase in the future as the area continues to grow; and,

WHEREAS, existing and future traffic volumes are such that congestion is and will continue to negatively impact the ability of the corridor to move traffic; and,

WHEREAS, existing and future traffic volumes are such that safety is a concern at intersections and along some segments of the corridor; and,

WHEREAS, Anoka County and the City of Blaine have worked together in the past to make travel capacity and safety improvements along the corridor; and,

WHEREAS, the Anoka County Highway Department is proposing to submit an application to the Transportation Advisory Board through the Metropolitan Council's 2020 Regional Solicitation program to receive federal transportation funds to widen CSAH 12 ($109^{\text {th }}$ Avenue NE) from CSAH 52 (Radisson Road NE) to CSAH 17 (Lexington Blvd NE) in the city of Blaine; and,

WHEREAS, Anoka County has the necessary capabilities to adequately fund its local cost share for this public improvement project:

NOW, THEREFORE, BE IT RESOLVED that the Anoka County Highway Department is hereby authorized to submit an application to the Transportation Advisory Board, through the Metropolitan Council's 2020 Regional Solicitation program, in the Roadway Expansion category, to receive federal transportation funds to make capacity and safety improvements on CSAH 12 ($109^{\text {th }}$ Avenue NE) from CSAH 52 (Radisson Road NE) to CSAH 17 (Lexington Blvd NE) in the city of Blaine.

STATE OF MINNESOTA)			
I, Rhonda Sivarajah, County Administrator, Anoka County, Minnesota, hereby certify that I have compared the foregoing copy	DISTRICT \#1-LOOK	X	
county with the original record thereof on file in the Administration Office, Anoka County,	DISTRICT \#2 - BRAASTAD	X	
Minnesota, as stated in the minutes of the proceedings of said board at a meeting duly held	DISTRICT \#3 - west	X	
correct copy of said original record and of the whole thereof, and that said resolution was duly	DISTRICT \#4 - MEISNER	X	
Witness my hand and seal this 14th day of il 2920.	DISTRICT \#5 - GAMACHE	X	
	DISTRICT \#6 - REINERT	X	
COUNTY ADMINISTRATOR	DISTRICT \#7-SCHULTE	X	

March 23, 2020

Joe MacPherson
County Engineer
Anoka County Highway Department
1440 Bunker Lake Blvd. NW
Andover, MN 55304

RE: Letter of Support for CSAH 12 Corridor Improvements
Dear Mr. MacPherson,
This letter documents the City of Blaine's support for Anoka County's funding request to the Metropolitan Council for the 2020 Regional Solicitation for 2024-2025 funding for the expansion of CSAH 12 (109 ${ }^{\text {th }}$ Avenue) to four lanes from CSAH 52 (Radisson Road) to CSAH 17 (Lexington Avenue).

Blaine looks forward to continued cooperation with Anoka County as this project moves forward and as we work together to improve travel mobility and safety.

If you have any questions or require additional information, please reach out to me at 763-785-6121 or mwolfe@blainemn.gov

Sincerely,

Michelle A Wolfe Blaine City manager

Existing Condition Photographs: CSAH 12 in Blaine

Anoka County
MINNESOTA
Respectful, Innovative, Fiscally Responsible

VIEW: Looking west along CSAH 12 from approximately Edison Street NE April, 2020

[^0]: Mult-use trail in Anoka County (Source: Kris Lindhahi)

[^1]: Intersection in Anoka County (Source: Anoka County)

