

Agenda

- Study Background
- Before-and-After Results
- Equity Evaluation
- Scoring and Tiering Results
- Implementation Next Steps
- Application of study in the 2050 Transportation Policy Plan (TPP)
- Application of study in the Regional Solicitation

Intersection Mobility and Safety Study

Study Background

- Review implementation from 2017 Principal Arterial Intersection Conversion Study
- Analyze before-and-after conditions of previous projects
- Prioritize intersections (high, medium, low - similar to last study effort)
- Use this information to influence project scoping in the short term, and long-range investment planning
- Identify regional priorities for 2050 TPP and Regional Solicitation

Study Locations

Before-andAfter Results

Before-and-After Analysis

Quantitative and Qualitative Assessment

- Includes mobility, emissions, safety, equity, engagement, land use impacts, and multimodal accessibility
- Locations:
- Hwy 65 and Viking Blvd
- Hwy 169 and Hwy 41

Qualitative Assessment

- Includes equity, engagement, land use impacts, and multimodal accessibility
- Locations:
- Hwy 10 and Armstrong Blvd
- Hwy 7 and Louisiana Ave

Before-and-After Equity Analysis

Key takeaways:

- All four projects provided enhanced multimodal connectivity by including local improvements (marked crosswalks, refuge islands, pedestrian signals, bike paths, lighting, etc.) or connecting access to regional trails.
- Projects support local comprehensive and transportation plan goals.

Criterion	Metric(s)	Evaluation type
Base evaluation	People of color, poverty, disability status, people under age 18 \& over age 65	Quantitative
Existing population	Comp plan mode share \& other transportation goals, planned land use	Qualitative
Local plans \& policies	How do existing land use and zoning change near the interchange following a project?	Qualitative
Before and after	How does built form change - e.g., more pedestrian-oriented areas or greater emphasis on parking, etc.?	Qualitative
Built form	Percent people driving, walking, using transit, bicycling within one-half mile of project	Quantitative
Mode shift	AADT, crashes (severity, are bikes/peds involved), vehicle speed	Quantitative
Traffic \& safety	Pedestrian/bicycle improvements \& network connections, pedestrian crossing distance/delay, bike/ped LOS	Qualitative \& quantitative
Multimodal connectivity		

Equity Evaluation Framework

Evaluation Criteria

Benefits

- Active transportation: Project improves or expands bicycle or pedestrian facilities. Features may include
\checkmark Separated shared-use trails
\checkmark Grade-separated crossings
\checkmark Improved lighting.
- Transit access and service: Project improves transit service and/or access, including first- and last-mile access. Investments may include
\checkmark Transit stop improvements
\checkmark Transit advantages
\checkmark Added transit service.
- Americans with Disabilities Act (ADA): Project improves accessibility for persons with disabilities
\checkmark Transit stops
\checkmark ADA curb ramps
\checkmark Audio-visual signals
\checkmark Driveway grade

Burdens

- Significant barrier effects (e.g., widen from four to six lanes, grade change, etc.)
- Significant cumulative/disproportionate impacts
- Increases displacement of residents, businesses or public amenities
- Reduces business revenue and employment (e.g., by relocating businesses)
- Greatly increases noise or emissions
- Reduces safety and personal security

Before-and-After Analysis

Hwy 169 and Hwy 41

- Annual benefits
- \$1.8 million in annual travel time savings
- \$5.4 million in annual crash cost savings
- Travel time reliability - Planning Time Index
- NB Hwy 169: $1.28 \rightarrow 1.04$
- SB Hwy 169: $1.42 \rightarrow 1.13$

Household Income by Trips

Scoring and Tiering Results

Performance Measures

MOBILITY

Total Intersection Delay

CrossStreet Delay

Transit Passenger Delay

SAFETY

hours on buses passing through intersection

Severe

> Person-hours for worst approach and worst peak

Daily personhours for cross street approaches

Daily person-

SPACE Analysis

Crash Rate

Total dollar value over 5 years, $K=2 x A$

MULTIMODAL \& EQUITY

Aggregate score of 19 factors for ped/bike and equity

Top Scoring Locations

Rank	Location
1	6TH AVE N \& HIGHWAY 55 \& LYNDALE AVE N
2	HWY 51 \& CR B
3	CSAH 23 (CEDAR AVE) \& CSAH 42
4	HIGHWAY 55 \& PENN AVE N
5	46TH ST E \& HIAWATHA AVE
6	TH 252 \& 85TH AVE
7	HIGHWAY 55 \& LYNDALE AVE N
8	TH 65 NE \& OSBORNE RD
9	TH 252 \& 66TH AVE
10	CSAH 42 \& CSAH 5
11	CSAH 23 (CEDAR AVE) \& 140TH ST
12	38TH ST E \& HIAWATHA AVE
13	35TH ST E \& HIAWATHA AVE
14	TH 65 \& 93RD LN
15	FERRY ST N \& FERRY ST S \& MAIN ST W
16	CEDAR AVE \& 160TH ST
17	HIGHWAY 101 \& DIAMOND LAKE RD S
18	TH 13 \& NICOLLET AVE
19	HIGHWAY 169 \& DAYTON RD
20	CSAH 42 \& NICOLLET AVE

Corridor Sections

Corridors/Locations	Intersections
TH 13: Quentin Ave to Washburn Ave	4
TH 252: 66th Ave to Brookdale Dr	6
TH 65: I-694 to CR 10	2
TH 65: 131st to Bunker Lake Blvd	3
TH 55: CSAH 61 to CR 101 (Plymouth)	6
Cedar Ave: CSAH 42 to 138th St	3
CSAH 42: Cedar Ave to Flagstaff Ave	4
CSAH 42: CR 5 to I-35E (Burnsville)	4
TH 55: I-94 to Penn Ave (Olson Memorial)	7
TH 55: TH 100 to General Mills Blvd (Golden Valley)	2
TH 61: Burns Ave to Warner Rd	2
TH 7 : Blake Rd to Texas Ave	2
Shepard Rd (CH 36): Jackson St to Sibley St	2
TH 36 (Oak Park Heights): Washington Ave; Osgood Ave	2
TH 55: 46th St E to 26th St E (Hiawatha)	8
TH 169: 109th Ave to Dayton Rd (Champlin)	8

Regional Priorities Overview

Map of Tiering Results

Identifying Regional Priorities

- Review agency priorities with tiering results
- Do problem magnitudes and types align with local vision?
- Identify optimal interchange projects
- High regional priority + local priority + planning work complete
- Consider surrounding context
- Is there a corridor need or location-specific issue?
- Identify optimal projects for other local priorities
- Review performance across scoring criteria
- Determine appropriate project scope and type based on observed problems

Implementation Plans

Implementation Next Steps

Findings and Conclusions

- Approximately 90 intersections in the region with High Priority needs
- An additional 115 locations are Medium Priority where needs suggest substantial investment (\$5M-\$20M) could be cost effective
- Majority of high-need intersections in corridors with several high-need locations
- Many of these have been studied or are advancing through project development
- Corridor-level solutions may be more effective than isolated improvements
- Remaining stand-alone locations are also critical to fill gaps in the regional highway system
- Recently completed projects show high effectiveness in improving project outcomes

Application of Study in the 2050 TPP

- All high priority locations will be included in Current Revenue Scenario as "opportunity areas" with most locations being at-grade solutions, except for those high regional priorities that were also high local priorities and had completed planning work that pointed to grade separations:
- TH 13
- TH 65 (north of CR 10)
- TH 36 and TH 120
- TH 5 and Hennepin CSAH 4 (Eden Prairie Rd)

Funding Considerations

- Important role of Regional Solicitation in partially funding projects
- Regional Solicitation funds are often "first dollars in"
- Once partial funding is committed (i.e., Regional Solicitation), project becomes more competitive in grant opportunities
- Agencies can leverage study findings identifying their locations as regional priorities when applying for funding (e.g., MnDOT's Reconnecting Communities grant application on Highway 55 west of
 downtown Minneapolis)

Application of Study in Regional Solicitation

- Findings from Before-and-After studies demonstrate that these projects yield significant benefits
- Regional Solicitation is instrumental in helping implement these projects
- However, that remains a minor share of project cost and must be supplemented with more funding, typically from several additional sources

Questions?

Website:

https://metrocouncil.org/Transportation/System/Highways/ Studies/Intersection-Mobility-and-Safety-Study.aspx

Steve Peterson, Senior Manager of Highway Planning steven.peterson@metc.state.mn.us, 651-602-1819

Michael Corbett, State Program Administrator Coordinator michael.i.corbett@state.mn.us, 651-234-7793

Paul Morris, Policy \& System Studies Director pmorris@srfconsulting.com, 763-452-4773

