Application

04774-2016 Roadway Modernization
04964 - Concord Street Improvements
Regional Solicitation - Roadways Including Multimodal Elements

Status: Submitted
Submitted Date:
07/13/2016 4:12 PM

Primary Contact

Name:*		Christopher		
	Salutation	First Name	Middle Name	Last Name
Title:	City Engineer			
Department:	Engineering			
Email:	chartzell@southstpaul.org			
Address:	125 3rd Ave. N.			
*	South St. Paul	Minnesota		55075
	City	State/Province		Postal Code/Zip
Phone:*	651-554-3210			
	Phone		Ext.	
Fax:				
What Grant Programs are you most interested in?	Regional Solicitation - Roadways Including Multimodal Elements			

Organization Information

Jurisdictional Agency (if different):
Organization Type: City
Organization Website:
Address: 125 3RD AVE N

* SO ST PAUL | 55075 | Minnesota | State/Province |
| :--- | :--- | :--- |

County:

Phone:*
Dakota
612-450-8704

Fax:

PeopleSoft Vendor Number

0000020997A1

Project Information

Project Name	Concord Street Improvements
Primary County where the Project is Located	Dakota
Jurisdictional Agency (If Different than the Applicant):	MnDOT

Brief Project Description (Limit 2,800 characters; approximately 400 words)

The project consists of reconstruction/modernization of Concord Street, an A-Minor Arterial Reliever to TH 52, from Grand Avenue to 200 feet north of Annapolis Street in South St. Paul. The project will modernize the roadway and drainage, upgrade the traffic signals at Wentworth and Bryant Avenues, and make the corridor more multi-modal with on-street bike lanes and continuous sidewalks. The bike facilities will fill a gap in the Regional Bicycle Transportation Network, connecting Saint Paul, South St. Paul, and beyond with the Mississippi River Trail and Wakota Bridge across the Mississippi River via existing bike shoulders on Hardman and Verderosa Avenues.

Improvements vary throughout the corridor and are described below from south to north.

A short section of Concord Street from Grand Avenue to Hardman Avenue will be restriped to taper the existing four-lane to the proposed twolane section.

Section B will convert the existing 48 -foot, unstriped section to a two-lane cross section with 11-foot lanes and dedicated left turn lanes at intersections. On-street bike lanes will be added. Sidewalks, where existing, will be replaced and widened and will be constructed to fill in gaps on both sides of the street. On-street parking will be maintained where possible, and retaining walls will be replaced as necessary. This section will be repaved, and drainage infrastructure will be replaced.

Section C will convert the existing 48 -foot, unstriped section to a three-lane cross section with 11-foot lanes and a 12-foot shared center turn lane. On-street bike lanes will be added. Sidewalks, where existing, will be replaced and widened and
will be constructed to fill in gaps. On-street parking will be removed from both sides of the street. This section will be repaved, and drainage infrastructure will be replaced.

Section D will maintain the existing two-lane section, with dedicated left turn lanes added where necessary. On-street bike lanes and a 10-foot offroad path on the west side will be added. The path will provide connectivity to the Mississippi River Trail and the Dakota County greenway system via the Simon's Ravine trailhead and the River to River Greenway. On-street parking will be maintained in parking bays where necessary. This section will be repaved, and drainage infrastructure will be replaced.

This project will be an investment in traditionally disadvantaged communities; improve bike and pedestrian facilities and network connectivity; improve safety for all modes, including freight, by delineating lanes and adding turn lanes; and improve multimodal access to a Regional Manufacturing area.

Include location, road name/functional class, type of improvement, etc.

TIP Description Guidance (will be used in TIP if the project is
selected for funding)
Project Length (Miles)

Project Funding

Are you applying for funds from another source(s) to implement this project?

If yes, please identify the source(s)
Federal Amount
Match Amount
MnDOT STIP and City funds
\$7,000,000.00
\$2,200,000.00
Minimum of 20% of project total

Minimum of 20\%
Compute the match percentage by dividing the match amount by the project total
Source of Match Funds
City of South St. Paul
A minimum of 20% of the total project cost must come from non-federal sources; additional match funds over the 20% minimum can come from other federal sources

Preferred Program Year
Select one:
2020
For TDM projects, select 2018 or 2019. For Roadway, Transit, or Trail/Pedestrian projects, select 2020 or 2021.
Additional Program Years:
Select all years that are feasible if funding in an earlier year becomes available.

Specific Roadway Elements

CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES

Mobilization (approx. 5\% of total cost)	$\$ 475,000.00$
Removals (approx. 5\% of total cost)	$\$ 530,000.00$
Roadway (grading, borrow, etc.)	$\$ 450,000.00$
Roadway (aggregates and paving)	$\$ 1,600,000.00$
Subgrade Correction (muck)	$\$ 0.00$
Storm Sewer	$\$ 1,390,000.00$
Ponds	$\$ 0.00$

Concrete Items (curb \& gutter, sidewalks, median barriers) \$320,000.00
Traffic Control \$36,000.00
Striping \$80,000.00
Signing \$20,000.00
Lighting \$0.00
Turf - Erosion \& Landscaping \$320,000.00
Bridge \$0.00
Retaining Walls $\quad \$ 1,500,000.00$
Noise Wall (do not include in cost effectiveness measure) \$0.00
$\begin{array}{lr}\text { Traffic Signals } & \$ 100,000.00\end{array}$
Wetland Mitigation \$0.00
Other Natural and Cultural Resource Protection \$0.00
RR Crossing \$0.00
Roadway Contingencies $\quad \$ 635,000.00$
Other Roadway Elements \$0.00
Specific Bicycle and Pedestrian Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Path/Trail Construction \$166,000.00
Sidewalk Construction \$870,000.00
On-Street Bicycle Facility Construction \$518,000.00
Right-of-Way $\$ 0.00$
Pedestrian Curb Ramps (ADA) \$30,000.00
Crossing Aids (e.g., Audible Pedestrian Signals, HAWK) $\$ 0.00$
Pedestrian-scale Lighting $\$ 0.00$
Streetscaping $\$ 0.00$
Wayfinding $\$ 0.00$
Bicycle and Pedestrian Contingencies \$160,000.00
Other Bicycle and Pedestrian Elements $\$ 0.00$
Totals \$1,744,000.00
Specific Transit and TDM Elements
CONSTRUCTION PROJECT ELEMENTS/COST ESTIMATES Cost
Fixed Guideway Elements $\$ 0.00$
Stations, Stops, and Terminals $\$ 0.00$
Support Facilities $\$ 0.00$
Transit Systems (e.g. communications, signals, controls, fare collection, etc.)
Vehicles $\$ 0.00$
Contingencies $\$ 0.00$
Right-of-Way $\$ 0.00$
Other Transit and TDM Elements $\$ 0.00$
Totals $\$ 0.00$

Transit Operating Costs

Cost Per Platform hour (full loaded Cost)	$\$ 0.00$
Substotal	$\$ 0.00$
Other Costs - Administration, Overhead,etc.	$\$ 0.00$

Totals

Total Cost	$\$ 9,200,000.00$
Construction Cost Total	$\$ 9,200,000.00$
Transit Operating Cost Total	$\$ 0.00$

Requirements - All Projects

All Projects

1.The project must be consistent with the goals and policies in these adopted regional plans: Thrive MSP 2040 (2014), the 2040 Transportation Policy Plan, the 2040 Regional Parks Policy Plan (2015), and the 2040 Water Resources Policy Plan (2015).

Check the box to indicate that the project meets this requirement. Yes
2.The project must be consistent with the 2040 Transportation Policy Plan. Reference the 2040 Transportation Plan objectives and strategies that relate to the project.

> - Goal: Transportation System Stewardship; Objective A. Efficiently preserve and maintain...; Strategy A2...identify cost-effective opportunities to incorporate improvements for safety,...bicycle, and pedestrian facilities; page 2.6

- Goal: Safety and Security; Objective A. Reduce crashes and improve safety and security for all modes...; Strategies B1...incorporate safety and security...throughout processes, B6...provide and improve facilities for safe walking and bicycling...; page 2.7
- Goal: Access to Destinations; Objectives A. Increase the availability for multimodal travel options..., D. Increase...the share of trips taken using transit, bicycling, and walking, E. Improve multimodal travel options for people of all ages and abilities...; Strategies C1...systems that are multimodal and provide connections between modes, C2...provide a system of interconnected arterial roads, streets, bicycle facilities, and pedestrian facilities..., C15...focus investments on completing Priority Regional Bicycle Transportation Corridors..., C16...provide for [improved] bicycle and pedestrian...continuity between jurisdictions; page 2.8-2.10
- Goal: Competitive Economy; Objectives A. Improve multimodal access to regional job concentrations..., B. Invest is a multimodal transportation system...; Strategies D3...regional transit and bicycle systems that improve connections to jobs and opportunity; page 2.11
- Goal: Healthy Environment; Objectives C. Increase the availability and attractiveness of
transit, bicycling, and walking..., D. Provide a
transportation system that promotes community
cohesion and connectivity...; Strategies
E3...implement a transportation system that
considers the needs of all potential users...,
E5...protect, enhance and mitigate impacts on the
cultural and built environments...; page 2.12-13
- Goal: Leveraging Transportation Investments to Guide Land Use; Objective B. Maintain adequate highway...-accessible land to meet existing and future demand for freight movement; Strategy F3...operate, maintain, and rebuild an adequate system of interconnected highways and local roads; page 2.14
3.The project or the transportation problem/need that the project addresses must be in a local planning or programming document. Reference the name of the appropriate comprehensive plan, regional/statewide plan, capital improvement program, corridor study document [studies on trunk highway must be approved by the Minnesota Department of Transportation and the Metropolitan Council], or other official plan or program of the applicant agency [includes Safe Routes to School Plans] that the project is included in and/or a transportation problem/need that the project addresses.

List the applicable documents and pages:

> City of South St. Paul 2015-2019 Capital Improvement Plan, page 86; City of South St. Paul $2016-2020$ Capital Improvement Program, page 112; Metropolitan Council's Draft 2017-2020 Transportation Improvement Program for the Twin Cities Metropolitan Area, page A-16
4.The project must exclude costs for studies, preliminary engineering, design, or construction engineering. Right-of-way costs are only eligible as part of bicycle/pedestrian projects, transit stations/stops, transit terminals, park-and-ride facilities, or pool-and-ride lots. Noise barriers, drainage projects, fences, landscaping, etc., are not eligible for funding as a standalone project, but can be included as part of the larger submitted project, which is otherwise eligible.

Check the box to indicate that the project meets this requirement. Yes
5.Applicants that are not cities or counties in the seven-county metro area with populations over 5,000 must contact the MnDOT Metro State Aid Office prior to submitting their application to determine if a public agency sponsor is required.

Check the box to indicate that the project meets this requirement. Yes
6. Applicants must not submit an application for the same project elements in more than one funding application category.

Check the box to indicate that the project meets this requirement. Yes
7.The requested funding amount must be more than or equal to the minimum award and less than or equal to the maximum award. The cost of preparing a project for funding authorization can be substantial. For that reason, minimum federal amounts apply. Other federal funds may be combined with the requested funds for projects exceeding the maximum award, but the source(s) must be identified in the application. Funding amounts by application category are listed below.
Roadway Expansion: \$1,000,000 to \$7,000,000
Roadway Reconstruction/ Modernization: \$1,000,000 to \$7,000,000
Roadway System Management \$250,000 to \$7,000,000
Bridges Rehabilitation/ Replacement: \$1,000,000 to \$7,000,000
Check the box to indicate that the project meets this requirement. Yes
8. The project must comply with the Americans with Disabilities Act.

Check the box to indicate that the project meets this requirement. Yes
9. The project must be accessible and open to the general public.

Check the box to indicate that the project meets this requirement. Yes
10. The owner/operator of the facility must operate and maintain the project for the useful life of the improvement.

Check the box to indicate that the project meets this requirement. Yes
11. The project must represent a permanent improvement with independent utility. The term independent utility means the project provides benefits described in the application by itself and does not depend on any construction elements of the project being funded from other sources outside the regional solicitation, excluding the required non-federal match. Projects that include traffic management or transit operating funds as part of a construction project are exempt from this policy.

Check the box to indicate that the project meets this requirement. Yes
12. The project must not be a temporary construction project. A temporary construction project is defined as work that must be replaced within five years and is ineligible for funding. The project must also not be staged construction where the project will be replaced as part of future stages. Staged construction is eligible for funding as long as future stages build on, rather than replace, previous work.

Check the box to indicate that the project meets this requirement. Yes
13. The project applicant must send written notification regarding the proposed project to all affected state and local units of government prior to submitting the application.

Check the box to indicate that the project meets this requirement. Yes

Roadways Including Multimodal Elements

1.All roadway and bridge projects must be identified as a Principal Arterial (Non-Freeway facilities only) or A-Minor Arterial as shown on the latest TAB approved roadway functional classification map.

Check the box to indicate that the project meets this requirement. Yes
Roadway Expansion and Reconstruction/Modernization projects only:
2. The project must be designed to meet 10-ton load limit standards.

Check the box to indicate that the project meets this requirement. Yes
Bridge Rehabilitation/Replacement projects only:
3.Projects requiring a grade-separated crossing of a Principal Arterial freeway must be limited to the federal share of those project costs identified as local (non-MnDOT) cost responsibility using MnDOTs Cost Participation for Cooperative Construction Projects and Maintenance Responsibilities manual. In the case of a federally funded trunk highway project, the policy guidelines should be read as if the funded trunk highway route is under local jurisdiction.

Check the box to indicate that the project meets this requirement.

```
4.The bridge must carry vehicular traffic. Bridges can carry traffic from multiple modes. However, bridges that are exclusively for bicycle or
pedestrian traffic must apply under one of the Bicycle and Pedestrian Facilities application categories. Rail-only bridges are ineligible for
funding.
Check the box to indicate that the project meets this requirement.
5.The length of the bridge must equal or exceed 20 feet.
Check the box to indicate that the project meets this requirement.
6. The bridge must have a sufficiency rating less than }80\mathrm{ for rehabilitation projects and less than 50 for replacement projects. Additionally, the
bridge must also be classified as structurally deficient or functionally obsolete.
Check the box to indicate that the project meets this requirement.
```


Requirements - Roadways Including Multimodal Elements

Project Information-Roadways

County, City, or Lead Agency	City of South St. Paul
Functional Class of Road	A-Minor Arterial Reliever
Road System	TH
TH, CSAH, MSAS, CO. RD., TWP. RD., CITY STREET	
Road/Route No.	156
i.e., 53 for CSAH 53	Concord Street
Name of Road	55075
Example; 1st ST., MAIN AVE	$05 / 01 / 2020$
Zip Code where Majority of Work is Being Performed	$10 / 31 / 2021$
(Approximate) Begin Construction Date	Grand Avenue
(Approximate) End Construction Date	
TERMINI:(Termini listed must be within 0.3 miles of any work)	
From:	
(Intersection or Address)	Annapolis Street
To:	
(Intersection or Address)	Cr At

Reconstruct base, surface, curb and gutter, storm sewer,
Primary Types of Work retaining walls, signals, sidewalk, and pedestrian ramps; add bike lanes, sidewalk, off-road

```
BRIDGE/CULVERT PROJECTS (IF APPLICABLE)
```

Old Bridge/Culvert No.:
New Bridge/Culvert No.:
Structure is Over/Under
(Bridge or culvert name):

Expander/Augmentor/Connector/Non-Freeway Principal Arterial

Select one:

Area	0
Project Length	0
Average Distance	0
Upload Map	1468361540383 _Roadway Area Definition Map.pdf

Reliever: Relieves a Principal Arterial that is a Freeway Facility

Facility being relieved
TH 52
Number of hours per day volume exceeds capacity (based on the Congestion Report)

Reliever: Relieves a Principal Arterial that is a Non-Freeway Facility

Facility being relieved
Number of hours per day volume exceeds capacity (based on the table below)

Non-Freeway Facility Volume/Capacity Table

Hour	NB/EB Volume	SB/WB Volume
12:00am - 1:00am		Capacity Volume exceeds capacity
1:00am-2:00am	0	
2:00am - 3:00am	0	
3:00am - 4:00am	0	
4:00am - 5:00am	0	
5:00am - 6:00am	0	
6:00am - 7:00am	0	
7:00am - 8:00am	0	
8:00am - 9:00am	0	

```
9:00am-10:00am 0
10:00am-11:00am 0
11:00am-12:00pm 0
12:00pm-1:00pm 0
1:00pm-2:00pm 0
2:00pm-3:00pm 0
3:00pm - 4:00pm 0
4:00pm - 5:00pm 0
5:00pm-6:00pm 0
6:00pm-7:00pm 0
7:00pm - 8:00pm 0
8:00pm-9:00pm 0
9:00pm - 10:00pm 0
10:00pm-11:00pm 0
11:00pm-12:00am 0
```


Measure B: Project Location Relative to Jobs, Manufacturing, and Education

Existing Employment within 1 Mile:7046

Existing Manufacturing/Distribution-Related Employment within 1 Mile:

Existing Students: 0
Upload Map 1468360147699_Regional Economy Map.pdf

Measure C: Current Heavy Commercial Traffic

Location:	Concord Street south of Hardman Avenue
Current daily heavy commercial traffic volume:	1094
Date heavy commercial count taken:	$6 / 15 / 16$

Measure D: Freight Elements

The improvements include delineating travel lanes in Sections B and C and adding a continuous shared left turn lane in Section C. The lane delineation will improve visibility and tracking for trucks traveling in this regional manufacturing/distribution center corridor, reducing conflicts with other travel modes. The turn lane will provide designated space for trucks to safely slow down and turn while minimizing conflicts with other vehicles in the corridor.

Measure A: Current Daily Person Throughput

Location	Concord Street north of Bryant Avenue
Current AADT Volume	8400
Existing Transit Routes on the Project	71
For New Roadways only, list transit routes that will be moved to the new roadway	
Upload Transit Map	1468360302901_Transit Connections Map.pdf

Response: Current Daily Person Throughput

Average Annual Daily Transit Ridership 0

Current Daily Person Throughput 10920.0

Measure B: 2040 Forecast ADT

Use Metropolitan Council model to determine forecast (2040) ADT Yes
volume volume

If checked, METC Staff will provide Forecast (2040) ADT volume
OR
Identify the approved county or city travel demand model to determine forecast (2040) ADT volume

Forecast (2040) ADT volume

Measure A: Project Location and Impact to Disadvantaged Populations

[^0]Project located in Area of Concentrated Poverty:
Projects census tracts are above the regional average for population in poverty or population of color:

Project located in a census tract that is below the regional average for population in poverty or populations of color or includes children, people with disabilities, or the elderly:

Response (Limit 2,800 characters; approximately 400 words)

The project will provide substantial investment and transportation system benefit in traditionally disadvantaged communities, including a community that is above the regional average for population in poverty or population of color and an area of concentrated poverty with 50 percent or more residents of color. The project will deliver a multimillion dollar investment in a census tract that has not seen significant highway and infrastructure investment in more than 60 years. The project will also improve the integrated, multimodal transportation system for people of all ages, incomes, and abilities in these areas. The project will close the existing gaps in the non-motorized transportation network, both by connecting to the Regional Bicycle Transportation Network and creating continuous sidewalks in the corridor, helping low-income individuals, children, and others that do not have a car access jobs and bus service in the corridor. The improvements will also upgrade the existing facilities to ADA-compliant facilities, benefitting people with disabilities and young children in strollers. The roadway improvements and resurfacing will provide an improved runningway for transit, both for buses and Metro Mobility, improving the ride quality for customers. Beyond the infrastructure benefits, this project will also create a more welcoming environment and improve the comfort and sense of security for all travelers.

Negative impacts will be limited to construction of the proposed project, which will be temporarily disruptive to the surrounding community and travelers in the corridor. Construction-phase impacts can be mitigated through staging and implementing multimodal best management practices.

The response should address the benefits, impacts, and mitigation for the populations affected by the project.

Measure B: Affordable Housing

City/Township Segment Length in Miles (Population)
South St. Paul
Saint Paul

Total Project Length

Total Project Length (Total Population) 2.2

Affordable Housing Scoring - To Be Completed By Metropolitan Council Staff

| City/TownshipSegment
 Length (Miles) | Total Length
 (Miles) | Score | Segment
 Length/Total
 Length | Housing Score
 Multiplied by
 Segment
 percent | |
| :--- | :---: | :---: | ---: | ---: | ---: | ---: |
| Item Deleted | 0 | 2.24 | 0 | 0 | 0 |
| | | 2 | 0 | 0 | 0 |

Affordable Housing Scoring - To Be Completed By Metropolitan Council Staff

Total Project Length (Miles)	2.24
Total Housing Score	0

Measure A: Year of Roadway Construction

Year of Original
Roadway Construction
or Most Recent
Reconstruction
1954

2
Calculation
Segment Length
Calculation 2
1954.0

1954

Average Construction Year

Total Segment Length (Miles)

Total Segment Length
2.2

Measure B: Geometric, Structural, or Infrastructure Improvements

Improving a non-10-ton roadway to a 10-ton roadway:	
Response (Limit 700 characters; approximately 100 words)	
Improved clear zones or sight lines:	Yes
Response (Limit 700 characters; approximately 100 words)	Sight lines at intersections will be improved by the addition of left turn lanes.
Improved roadway geometrics:	Yes
Response (Limit 700 characters; approximately 100 words)	The current lanes are not delineated, which causes driver confusion and is a safety hazard. The proposed improvements would stripe 11-foot lanes, a 12-foot shared left turn lane in one section of the corridor, and dedicated left turn lanes at intersections in the remainder of the corridor.
Access management enhancements:	Yes
Response (Limit 700 characters; approximately 100 words)	Properties with multiple driveways will have accesses consolidated during final design where possible.
Vertical/horizontal alignments improvements:	
Response (Limit 700 characters; approximately 100 words)	
Improved stormwater mitigation:	Yes
Response (Limit 700 characters; approximately 100 words)	The proposed project includes replacement of the existing storm sewer and improvements to address capacity and flooding issues along the project corridor.
Signals/lighting upgrades:	Yes
Response (Limit 700 characters; approximately 100 words)	The signals at Wentworth Avenue and Bryant Avenue will be upgraded with ADA improvements.
Other Improvements	Yes

The proposed project includes constructing continuous sidewalks throughout the corridor. Sidewalks are currently intermittent and not ADAcompliant.

Boulevard trees will be planted in Section D.

Measure A: Congestion Reduction/Air Quality

$\left.\begin{array}{ccccccc} & & & & & \text { EXPLANATIO } \\ \text { Total Peak } & \text { Total Peak } & \text { Total Peak } & & & \text { N of }\end{array}\right]$

14683608707
05_Congestio
n_AQ
Attachment.pd
f

Total Delay

Total Peak Hour Delay Reduced
0

Measure B:Roadway projects that do not include new roadway segments or railroad grade-separation elements

Total (CO, NOX,	Total (CO, NOX,
and VOC) Peak	and VOC) Peak
Hour Emissions	Hour Emissions
Per Vehicle	Per Vehicle with
without the Project	the Project
(Kilograms):	(Kilograms):

$0 \quad 0$
0
Total (CO, NOX,
and VOC) Peak
Hour Emissions
Reduced Per
Vehicle by the
Project
(Kilograms):

0
\(\left.\begin{array}{cc} \& Total (CO, NOX,

and VOC) Peak\end{array}\right\}\)| Hour Emissions | |
| :---: | :---: |
| Volume (Vehicles | Reduced by the |
| Per Hour): | Project |
| | (Kilograms): |

0
0

0

0

Total

0

Total (CO, NOX, and VOC) Peak
Hour Emissions
Per Vehicle with
(Kilograms):

0

Total (CO, NOX, and VOC) Peak Hour Emissions

Reduced Per
Vehicle by the Project
(Kilograms):

0

1468425018120_Congestion_AQ Attachment.pdf

Measure B: Roadway projects that are constructing new roadway segments, but do not include railroad grade-separation elements (for Roadway Expansion applications only):

	Total (CO, NOX, and VOC) Peak
Volume (Vehicles	Hour Emissions Reduced by the
Per Hour):	Project
	(Kilograms):

0

0

Total Parallel Roadways

Emissions Reduced on Parallel Roadways
0
Upload Synchro Report

New Roadway Portion:

Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons: 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced or Produced on New Roadway (Kilograms):

EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms):

Measure B:Roadway projects that include railroad grade-separation elements

Cruise speed in miles per hour without the project:
Vehicle miles traveled without the project:
Total delay in hours without the project:
Total stops in vehicles per hour without the project: 0
Cruise speed in miles per hour with the project: 0
Vehicle miles traveled with the project: 0
Total delay in hours with the project: 0
Total stops in vehicles per hour with the project: 0
Fuel consumption in gallons (F1) 0
Fuel consumption in gallons (F2) 0
Fuel consumption in gallons (F3) 0
Total (CO, NOX, and VOC) Peak Hour Emissions Reduced by the Project (Kilograms): 0EXPLANATION of methodology and assumptions used:(Limit
1,400 characters; approximately 200 words)

Transit Projects Not Requiring Construction

If the applicant is completing a transit or TDM application that is operations only, check the box and do not complete the remainder of the form. These projects will receive full points for the Risk Assessment.
Park-and-Ride and other transit construction projects require completion of the Risk Assessment below.
Check Here if Your Transit Project Does Not Require Construction

Measure A: Risk Assessment

1)Project Scope (5 Percent of Points)

Meetings or contacts with stakeholders have occurred
Yes
100\%
Stakeholders have been identified
40\%
Stakeholders have not been identified or contacted
0\%
2)Layout or Preliminary Plan (5 Percent of Points)

Layout or Preliminary Plan completed
Yes
100\%
Layout or Preliminary Plan started
50\%
Layout or Preliminary Plan has not been started
0\%
Anticipated date or date of completion
06/29/2016
3)Environmental Documentation (5 Percent of Points)

Document Status:

Document approved (include copy of signed cover sheet)

Document submitted to State Aid for review

Document in progress; environmental impacts identified; review request letters sent

50\%
Document not started Yes
0\%
Anticipated date or date of completion/approval
05/01/2019
4)Review of Section 106 Historic Resources (10 Percent of Points)

No known historic properties eligible for or listed in the National
Register of Historic Places are located in the project area, and project is not located on an identified historic bridge

100\%
Historic/archeological review under way; determination of no historic properties affected or no adverse effect anticipated Yes

80\%
Historic/archaeological review under way; determination of adverse effect anticipated

40\%
Unsure if there are any historic/archaeological resources in the project area

0\%
Anticipated date or date of completion of historic/archeological review:

05/01/2019

Project is located on an identified historic bridge
5)Review of Section $4 \mathrm{f} / 6 \mathrm{f}$ Resources (10 Percent of Points)

4(f) Does the project impacts any public parks, public wildlife refuges,
public golf courses, wild \& scenic rivers or public private historic properties?
6(f) Does the project impact any public parks, public wildlife refuges,
public golf courses, wild \& scenic rivers or historic property that
was purchased or improved with federal funds?
No Section 4f/6f resources located in the project area
100\%
No impact to $4 f$ property. The project is an independent
bikeway/walkway project covered by the bikeway/walkway
Negative Declaration statement; letter of support received

Section $4 f$ resources present within the project area, but no known adverse effects

80\%
Project impacts to Section 4f/6f resources likely
coordination/documentation has begun
50\%
Project impacts to Section 4f/6f resources likely
coordination/documentation has not begun
30%
Unsure if there are any impacts to Section 4f/6f resources in the project area

0\%
6)Right-of-Way (15 Percent of Points)

Right-of-way, permanent or temporary easements not required 100\%

Right-of-way, permanent or temporary easements has/have been acquired

100\%
Right-of-way, permanent or temporary easements required, offers made

75\%
Right-of-way, permanent or temporary easements required, appraisals made

50\%
Right-of-way, permanent or temporary easements required, parcels identified

25\%
Right-of-way, permanent or temporary easements required, parcels not identified

0\%
Right-of-way, permanent or temporary easements identification has not been completed

0\%
Anticipated date or date of acquisition
7)Railroad Involvement (25 Percent of Points)

No railroad involvement on project
100\%

Railroad Right-of-Way Agreement is executed (include signature page)

Railroad Right-of-Way Agreement required; Agreement has been initiated

```
60%
Railroad Right-of-Way Agreement required; negotiations have
begun
40%
Railroad Right-of-Way Agreement required; negotiations not
begun
0%
Anticipated date or date of executed Agreement
8)Interchange Approval (15 Percent of Points)*
*Please contact Karen Scheffing at MnDOT (Karen.Scheffing@state.mn.us or 651-234-7784)
to determine if your project needs to go through the Metropolitan Council/MnDOT Highway
Interchange Request Committee.
Project does not involve construction of a new/expanded
interchange or new interchange ramps
100%
Interchange project has been approved by the Metropolitan
Counci//MnDOT Highway Interchange Request Committee
100%
Interchange project has not been approved by the Metropolitan
Council/MnDOT Highway Interchange Request Committee
0%
9)Construction Documents/Plan (10 Percent of Points)
Construction plans completed/approved (include signed title
sheet)
100%
Construction plans submitted to State Aid for review
75%
Construction plans in progress; at least 30% completion
Yes
50%
Construction plans have not been started
0%
Anticipated date or date of completion
12/01/2019
10)Letting
Anticipated Letting Date 02/01/2020
```


Measure A: Roadway Projects that do not Include Railroad Grade-Separation Elements

Measure A: Multimodal Elements and Existing Connections

The project area currently includes bus service and intermittent sidewalks, often on one side of the street. The project area is currently served by Route 71, a local bus route that runs from Inver Grove Heights to Little Canada. Bike lanes on Concord Street currently end in Saint Paul and there are no sidewalks that connect to Simon's Ravine trailhead near Butler Avenue, which leads to the River to River Greenway and the Mississippi River Regional Trail.

The improvements include the construction of onstreet bike lanes, continuous sidewalks, and an offroad path. In Sections B and C, six-foot bike lanes and eight- to 10 -foot sidewalks will be added on both the east and west sides of the street. In Section D, six-foot bike lanes will be added on both sides of Concord Street, and a 10-foot path will be added on the west side, separated from the travel lanes by a six-foot boulevard.

The new pedestrian facilities will fill gaps in the existing sidewalk network and provide connections to bus stops and Simon's Ravine trailhead, which leads to the River to River Greenway and Mississippi River Regional Trail. The boulevards separating the pedestrians from the bikes and cars in some portions of the corridor will contribute to pedestrians' sense of safety.

The project area is identified as a Tier 1 corridor in the Regional Bicycle Transportation Network (RBTN), and the new bike facilities will fill gaps in the existing RBTN. Via the existing bike shoulders on Hardman and Verderosa Avenues, the bike lanes will also provide a connection to the Mississippi River Regional Trail and to the Wakota Bridge across the Mississippi River. This will enhance regional bicycle connectivity and support commuting bicyclists by providing connections to
the east, south, and north. The pedestrian and bicycle improvements will allow for easier, safer, and more efficient non-motorized travel in the corridor and beyond.

The proposed project will improve ride quality on buses and provide more and safer options for transit customers boarding and alighting from buses in the corridor.

Measure A: Cost Effectiveness

Total Project Cost (entered in Project Cost Form):	$\$ 9,200,000.00$
Enter Amount of the Noise Walls:	$\$ 0.00$
Total Project Cost subtract the amount of the noise walls:	$\$ 9,200,000.00$
Points Awarded in Previous Criteria	
Cost Effectiveness	$\$ 0.00$

Other Attachments

File Name	Description	File Size
Concord Street Layout_Updated.pdf	Project Layout	6.3 MB
Existing Conditions Photos.pdf	Existing Conditions Photos	6.4 MB
Federal STBGP Letter of Support for Concord Boulevard.pdf	Dakota County Letter of Support	

Roadway Area Definition

Results

Project Length: 2.218 miles
Project Area: 4.785 sq miProject Points \longrightarrow Principal Arterials
Project
A Minor Arterials
Project Area Principal Arterials Planned
For complete disclaimer of accuracy, please visit For complete dsclaimer of accuracy, please visit
tp

Socio-Economic Conditions Roadway Reconstruction/Modernization Project: Concord Street Improvements | Map ID: 1466523623052

Results

Project located IN
Area of Concentrated Poverty with 50% or more of residents are people of color (ACP50): (0 to 30 Points)

Project Points
Project
Project AreaArea of Concentrated Povertry > 50\% residents of color
Area of Concentrated Poverty
Above reg'l avg conc of race/poverty

For complete disclaimer of accuracy, please visit For complete disclaimer of accuracy, please visit
http://giswebsite.metc.state.mn.us/gissitenew/notice.aspx

Concord Street Improvements Project City of South St. Paul

No Synchro or HCM analysis was completed for this project.

Concord Street Improvements Project City of South St. Paul

No Synchro or HCM analysis was completed for this project.

Study Details

Study Title: The Safety and Operational Effects of Road Diet Conversion in Minnesota
Authors: Gates et al.
Publication Date: 2007

Abstract

Research was undertaken to explore the safety and operational effects of converting four-lane undivided roadways to three-lanes with a center two-way left turn lane (TWLTL) in Minnesota. Such conversions are commonly referred to as "road diets". Speed and/or crash data were collected for 9 road diet sites in Minnesota. Using multiple years of before and after data from each site, several statistical analyses were performed using both Empirical Bayes and Grouped Comparison procedures. Based on the results of an Empirical Bayes statistical analysis of total crashes, consistent decreases in the total crashes were observed after the road diet conversions at all seven sites for which crash data were available. The range of Empirical Bayes crash reductions between the seven sites varied from 37.3 to 54.3 percent, with an overall total crash reduction of 44.2 percent (408 crashes reduced). Crashes were also analyzed by injury status (injury vs. non-injury) and type (rear end, right angle, and left turn) using a Grouped Comparison procedure, which showed a net reduction in crashes after the conversions for non-injury and right angle crashes, with crash reductions of 45.7 and 37.0 percent, respectively. A net crash reduction was also observed for rear end and left turn crashes, although the reductions were not significant. Injury crashes showed negligible change. Reductions in the mean and 85th percentile speeds after the conversions were observed at each of the six sites for which speed data were available, with a median reduction in both the mean and 85 th speeds of 2 mph . The research findings suggest that conversion of four-lane undivided to three-lane TWLTL roadways is a recommended option within a given range of average daily traffic (ADT) values if the roadway of interest is experiencing safety problems related to left-turning traffic conflicting with through vehicles, which is typical of four-lane undivided roadways with several unsignalized intersections or commercial driveways.

Study Citation: Gates, T. J., Noyce, D. A., Talada, V., and Hill, L., "The Safety and Operational Effects of "Road Diet" Conversion in Minnesota." 2007 TRB 86th Annual Meeting: Compendium of Papers CD-ROM, Vol. TRB\#07-1918, Washington, D.C., (2007)

CMFs Associated With This Study

Category: Roadway

Countermeasure: Narrow cross section (4 to 3 lanes with two way left-turn lane)

CMF	CRF(\%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type
0.63	37		All	All	Not specified	Urban
1	$\underline{0}$		All	Fatal,Serious injury,Minor injury	Not specified	Urban
0.54	46		All	Property damage only (PDO)	Not specified	Urban
0.76	$\underline{24}$		Angle	All	Not specified	Urban
0.69	31		Rear end	All	Not specified	Urban
0.63	37		Angle	All	Not specified	Urban

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurrry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

MF ID: 261

Provide a left-turn lane on one major-road approach
 Description:

Prior Condition: No Prior Conditions)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left-and Right-Turn Lanes, Harwood et al., 2002

Applicability

Crash Type: All
Crash Severity: All
Roadway Types: Not Specified
Number of Lanes:
Road Division Type:
Speed Limit:
Area Type: Urban

Traffic Volume:

Time of Day:

If countermeasure is intersection-based

Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	Minimum of 1500 to Maximum of 40600 Average Daily Traffic (ADT)
Minor Road Traffic Volume: Minimum of 200 to Maximum of 8000 Average Daily Traffic (ADT)	

Development Details

Date Range of Data Used:

Municipality:

State:

Country:

Type of Methodology Used:

Sample Size Used:

Included in Highway Safety Manual?

Other Details

Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

Date Added to Clearinghouse:

Comments: Countermeasure name changed to match HSM

[View the Full Study Details]	Export PDF
Export this detail page as	
a PDF file	

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 263
Provide a left-turn lane on one major-road approach
Description:
Prior Condition: No Prior Condition(s)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Harwood et al., 2002

Star Quality Rating:	
	Crash Modification Factor (CMF)
Value:	0.76
Adjusted Standard Error:	0.03
Unadjusted Standard Error:	0.03
	Crash Reduction Factor (CRF)
Value:	24 (This value indicates a decrease in crashes)
Adjusted Standard Error:	3
Unadjusted Standard Error:	3

Applicability
Crash Type: All
Crash Severity: All

Roadway Types: Not Specified

Number of Lanes:

Road Division Type:

Speed Limit:

Area Type: Urban

Traffic Volume

Time of Day:

	If countermeasure is intersection-based
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	4-leg
Traffic Control:	Signalized
Major Road Traffic Volume:	Minimum of 4600 to Maximum of 40300 Average Daily Traffic (ADT)
Minor Road Traffic Volume: Minimum of 100 to Maximum of 13700 Average Daily Traffic (ADT)	

Development Details

Date Range of Data Used:

Municipality:

State:

Country:

Type of Methodology Used:
Before/after using empirical Bayes or full Bayes

Sample Size Used:

Included in Highway Safety Manual?

Date Added to Clearinghouse:

Comments:
Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

Other Details

Countermeasure name changed to match HSM

[View the Full Study Details].	Export PDF

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 265

Provide a left-turn lane on one major-road approach

Description:
Prior Condition: No Prior Condition(s)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Harwood et al., 2002

Star Quality Rating:	
	Crash Modification Factor (CMF)
Value:	0.71
Adjusted Standard Error:	0.05
Unadjusted Standard Error:	0.04
	Crash Reduction Factor (CRF)
Value:	29 (This value indicates a decrease in crashes)
Adjusted Standard Error:	5
Unadjusted Standard Error:	4
	Applicability
Crash Type:	All
Crash Severity:	Fatal,Serious Injury, Minor Injury
Roadway Types:	Not Specified
Number of Lanes:	
Road Division Type:	
Speed Limit:	
Area Type:	Urban

Traffic Volume:

Time of Day:
If countermeasure is intersection-based

Intersection Type: Roadway/roadway (not interchange related)

Intersection Geometry: 4-leg
Traffic Control: Stop-controlled

Major Road Traffic Volume:

Minor Road Traffic Volume:
Minimum of 200 to Maximum of 8000 Average Daily Traffic (ADT)

Development Details

Date Range of Data Used:

Municipality:

State:

Country:

Type of Methodology Used:

Sample Size Used:

Included in Highway Safety Manual?

Date Added to Clearinghouse:
Comments: Countermeasure name changed to match HSM

[View the Full Study Details].	Export PDF
Export this detail page as	
a PDF file	

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

MF ID: 261

Provide a left-turn lane on one major-road approach
 Description:

Prior Condition: No Prior Conditions)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Harwood et al., 2002

Traffic Volume:

Time of Day:

	If countermeasure is intersection-based
Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	Minimum of 1500 to Maximum of 40600 Average Daily Traffic (ADT)
Minor Road Traffic Volume:	Minimum of 200 to Maximum of 8000 Average Daily Traffic (ADT)

Development Details

Date Range of Data Used:

Municipality:

State:

Country:

Type of Methodology Used:

Sample Size Used:

Included in Highway Safety Manual?

Date Added to Clearinghouse:

Comments:
Countermeasure name changed to match HSM
Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

Export PDF
[View the Full Study Details]

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 263

Provide a left-turn lane on one major-road approach

Description:
Prior Condition: No Prior Condition(s)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Harwood et al., 2002

Star Quality Rating:	
	Crash Modification Factor (CMF)
Value:	0.76
Adjusted Standard Error:	0.03
Unadjusted Standard Error:	0.03
	Crash Reduction Factor (CRF)
Value:	24 (This value indicates a decrease in crashes)
Adjusted Standard Error:	3
Unadjusted Standard Error:	3

Applicability

Crash Type: All
Crash Severity: All
Roadway Types: Not Specified
Number of Lanes:
Road Division Type:
Speed Limit:
Area Type: Urban

Traffic Volume:
Time of Day:
If countermeasure is intersection-based
Intersection Type:
Roadway/roadway (not interchange related)
Intersection Geometry:
Traffic Control:

Development Details

Date Range of Data Used:

Municipality:

State:

Country:

Type of Methodology Used:

Sample Size Used:

Included in Highway Safety Manual?

Date Added to Clearinghouse:

Comments: Countermeasure name changed to match HSM

[View the Full Study Details]	Export PDF

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

CMF / CRF Details

CMF ID: 265

Provide a left-turn lane on one major-road approach

Description:
Prior Condition: No Prior Condition(s)
Category: Intersection geometry
Study: Safety Effectiveness of Intersection Left-and Right-Turn Lanes, Harwood et al., 2002

Crash Modification Factor (CMF)	
Value:	0.71
Adjusted Standard Error:	0.05
Unadjusted Standard Error:	0.04
	Crash Reduction Factor (CRF)
Value:	29 (This value indicates a decrease in crashes)
Adjusted Standard Error:	5
Unadjusted Standard Error:	4

Applicability
Crash Type: All

Crash Severity: Fatal,Serious Injury,Minor Injury
Roadway Types: Not Specified

Number of Lanes:

Road Division Type:

Speed Limit:

Area Type: Urban

Traffic Volume:

Time of Day:
If countermeasure is intersection-based

Intersection Type:	Roadway/roadway (not interchange related)
Intersection Geometry:	4-leg
Traffic Control:	Stop-controlled
Major Road Traffic Volume:	Minimum of 1500 to Maximum of 40600 Average Daily Traffic (ADT)
Minor Road Traffic Volume:	Minimum of 200 to Maximum of 8000 Average Daily Traffic (ADT)

Development Details

Date Range of Data Used:
Municipality:
State:
Country:
Type of Methodology Used:
Sample Size Used:

Included in Highway Safety Manual?

Date Added to Clearinghouse:

Comments:

Other Details

Yes. HSM lists this CMF in bold font to indicate that it has the highest reliability since it has an adjusted standard error of 0.1 or less.

Countermeasure name changed to match HSM

Export PDF

[View the Full Study Details]
Export this detail page as a PDF file

This site is funded by the U.S. Department of Transportation Federal Highway Administration and maintained by the University of North Carolina Highway Safety Research Center

For more information, contact Karen Scurry, FHWA Office of Safety Programs 609-637-4207

[^1]

Existing Conditions

Google Earth Plan View Photos - Full Corridor from South to North

Google Earth Street View Photos
Concord Street at Grand Avenue (looking northwest)

Concord Street south of Central Avenue (looking northwest)

Concord Street south of Butler Avenue (looking northwest)

July 13, 2016

Physical Development Division

Steven C. Mielke, Director
Dakota County
Western Service Center
14955 Galaxie Avenue
Apple Valley, MN 55124-8579
952.891 .7000

Fax 952.891 .7031
www.dakotacounty.us

Environmental Resources Land Conservation Groundwater Protection Surface Water Waste Regulation Environmental Initiatives

Office of Planning
Operations Management Facilities Management Fleet Management Parks

Transportation Highways Surveyor's Office Transit Office

Elaine Koutsoukos, Transportation Coordinator
Transportation Advisory Board
Metropolitan Council
390 Robert Street North
St. Paul, MN 55101
RE: Federal STBGP Letter of Support for Concord Boulevard from Hardman Avenue to Annapolis Street

Dear Ms. Koutsoukos:
The County Board of Commissioners has committed to support the proposed reconstruction of Concord Boulevard between Hardman Avenue and Annapolis Street in the City of South St Paul. This project would provide needed bicycle facilities, pedestrian safety and connectivity, and roadway capacity and safety improvements.

The City of South St. Paul, Dakota County, City of St. Paul, and the Minnesota Department of Transportation are jointly developing a Concord Street Corridor vision. Dakota County is aware of and understands the proposed project being submitted.

Dakota County appreciates efforts to secure funding for needed improvements along Concord Boulevard, and is supportive of the City of South St. Paul moving forward with this project.

We will be happy to answer any questions you may have regarding this project.

Sincerely,

Mark J. Krebsbach, P.E.
Transportation Director/County Engineer

Regional Bicycle Transportation Network (RBTN)
Concord Street Improvements City of South St. Paul

Minnesota Department of Transportation
Metro District
1500 West County Road B-2
Roseville, MN 5511

July 8, 2016
Chris Hartzell, PE
City Engineer
City of South St. Paul
$1253^{\text {rd }}$ Ave N
South St. Paul, MN 55075
RE: Regional Solicitation Application for the Concord St (TH 156) Reconstruction project
Dear Mr. Hartzell:
Thank you for requesting a letter of support from MnDOT for the Metropolitan Council/Transportation Advisory Board (TAB) 2016 Regional Solicitation. Your application for the Concord St/TH 156 (Hardman Ave to Annapolis St) Reconstruction project impacts MnDOT right of way on TH 156.

MnDOT, as the agency with jurisdiction over TH 156 would allow the improvements included in the application for Concord St/TH 156 Reconstruction project. Details of a future maintenance agreement with the City would be determined during project development to define how the improvements will be maintained for the project's useful life.

The City's project has no specific funding from MnDOT at this time. MnDOT does have a pavement project on TH 156 in year 2020 of the Draft 2017-2020 State Transportation Improvement Program (STIP) that extends the length of the City's proposed project. The City's project could be constructed in conjunction with the MnDOT pavement project. Given the fluctuations in MnDOT funding, a project could move out of the programmed year or be modified in some other way. Please continue to work with MnDOT Area staff to coordinate project funding.

Sincerely,

Scott McBride, P.E.
Metro District Engineer
Cc: Elaine Koustsoukos, Metropolitan Council Jon Solberg, MnDOT Metro District - South Area Manager

历
0

[^0]: Select one:
 Project located in Area of Concentrated Poverty with 50\% or more of residents are people of color (ACP50):

[^1]: The information contained in the Crash Modification Factors (CMF) Clearinghouse is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in the CMF Clearinghouse. The information contained in the CMF Clearinghouse does not constitute a standard, specification, or regulation, nor is it a substitute for sound engineering judgment.

